This article provides supplementary data for the paper "LC-MS/MS method for simultaneous quantification of heparan sulfate and dermatan sulfate in urine by butanolysis derivatization" (Forni et al., 2018). Several parameters were tested to optimize sample preparation by butanolysis in order to carry out simultaneous quantifications of HS and DS by tandem mass spectrometry.
View Article and Find Full Text PDFNew treatment options and improved strategies for Lysosomal Storage Disorders (LSDs) diagnosis on dried blood spot (DBS) have led to the development of several pilot newborn screening programs. Building on a previously published protocol, we devised a new 6-plex assay based on a single DBS punch incubated into a buffer containing a combination of substrates (GAA, GLA, ASM, GALC, ABG and IDUA). This new protocol incorporates a new trapping and clean-up procedure using perfusion chromatography connected on-line with an analytical column for analyte separation, after enzymatic reaction.
View Article and Find Full Text PDFMucopolysaccharidoses are a group of lysosomal storage disorders (LSDs) characterized by the accumulation of glycosaminoglycans (GAGs). Recently, LC-MS/MS has been widely applied in GAGs analysis combined with different sample preparations for cleaving GAGs to disaccharide units. The aim of the present is paper is to present a new method for the simultaneous quantification of urinary dermatan sulfate (DS) and heparan sulfate (HS) by LC-MS/MS, after butanolysis reaction.
View Article and Find Full Text PDFCardiac arrest (CA) is not a uniform condition and its pathophysiology strongly depends on its cause. In this work we have used a metabolomics approach to study the dynamic metabolic changes occurring in the plasma samples of a swine model following two different causes of CA, namely asphyxia (ACA) and ventricular fibrillation (VFCA). Plasma samples were collected at baseline and every minute during the experimental phases.
View Article and Find Full Text PDFRNA viruses are the agents of numerous widespread and often severe diseases. Their unique RNA-dependent RNA polymerase (RDRP) is essential for replication and, thus, constitutes a valid target for the development of selective chemotherapeutic agents. In this regard, we have investigated sugar-modified ribonucleoside analogues as potential inhibitors of the RDRP.
View Article and Find Full Text PDF2-Alkylamino-6-[1-(2,6-difluorophenyl)alkyl]-3,4-dihydro-5-alkylpyrimidin-4(3H)-ones (F(2)-NH-DABOs) 4, 5 belonging to the dihydro-alkoxy-benzyl-oxopyrimidine (DABO) family and bearing different alkyl- and arylamino side chains at the C(2)-position of the pyrimidine ring were designed as active against wild type (wt) human immunodeficiency virus type 1 (HIV-1) and some relevant HIV-1 mutants. Biological evaluation indicated the importance of the further anchor point of compounds 4, 5 into the non-nucleoside binding site (NNBS): newly synthesized compounds were highly active against both wild type and the Y181C HIV-1 strains. In anti-wt HIV-1 assay the potency of amino derivatives did not depend on the size or shape of the C(2)-amino side chain, but it associated with the presence of one or two methyl groups (one at the pyrimidine C(5)-position and the other at the benzylic carbon), being thymine, alpha-methyluracil or alpha-methylthymine derivatives almost equally active in reducing wt HIV-1-induced cytopathogenicity in MT-4 cells.
View Article and Find Full Text PDFNon-nucleoside reverse transcriptase inhibitors (NNRTIs) active against NNRTI-resistant mutants were obtained by introducing two methyl groups at positions 3 and 5 of the benzenesulfonyl moiety of L-737,126 (1) and coupling one to three glycinamide/alaninamide units to its carboxyamide function. In cell-based assays, the new derivatives showed activities against HIV-1 wild type and NNRTI-resistant mutants [Y181C, K103N-Y181C, and triple mutant (K103R, V179D, P225H) highly resistant to efavirenz] superior to that of the parent indole derivative 1.
View Article and Find Full Text PDFDihydro-alkoxy-benzyl-oxopyrimidines (DABOs) are a family of potent NNRTIs developed in the past decade. Attempts to improve their potency and selectivity led to thio-DABOs (S-DABOs), DATNOs, and difluoro-thio-DABOs (F(2)-S-DABOs). More recently, we reported the synthesis and molecular modeling studies of a novel conformationally constrained subtype of the S-DABO series characterized by the presence of substituents on the methylene linkage connecting the pyrimidine ring to the aryl moiety (Mai, A.
View Article and Find Full Text PDFThe potent anti-HIV-1 activities of L-737,126 (2) and PAS sulfones prompted us to design and test against HIV-1 in acutely infected MT-4 cells a number of novel 1- and 3-benzenesulfonylindoles. Indoles belonging to the 1-benzenesulfonyl series were found poorly or totally inactive. On the contrary, some of the 3-benzenesulfonyl derivatives turned out to be as potent as 2, being endowed with potencies in the low nanomolar concentration range.
View Article and Find Full Text PDFA novel series of potent, selective HIV-1 N-acylthiocarbamate (ATC) nonnucleoside reverse transcriptase inhibitors (NNRTIs) is described. The title compounds were synthesized through a highly convergent, one-pot procedure. In cell-based assays, the lead compound (17c) prevented the HIV-1 multiplication with an EC(50) of 8 microM.
View Article and Find Full Text PDF