Publications by authors named "Massimo Loriggiola"

In the last years, the technology for producing the important medical radionuclide technetium-99m by cyclotrons has become sufficiently mature to justify its introduction as an alternative source of the starting precursor [Tc][TcO] ubiquitously employed for the production of Tc-radiopharmaceuticals in hospitals. These technologies make use almost exclusively of the nuclear reaction Mo(p,2n)Tc that allows direct production of Tc-99m. In this study, it is conjectured that this alternative production route will not replace the current supply chain based on the distribution of Mo/Tc generators, but could become a convenient emergency source of Tc-99m only for in-house hospitals equipped with a conventional, low-energy, medical cyclotron.

View Article and Find Full Text PDF

The design and fabrication of a fully-automated, remotely controlled module for the extraction and purification of technetium-99m (Tc-99m), produced by proton bombardment of enriched Mo-100 molybdenum metallic targets in a low-energy medical cyclotron, is here described. After dissolution of the irradiated solid target in hydrogen peroxide, Tc-99m was obtained under the chemical form of TcO, in high radionuclidic and radiochemical purity, by solvent extraction with methyl ethyl ketone (MEK). The extraction process was accomplished inside a glass column-shaped vial especially designed to allow for an easy automation of the whole procedure.

View Article and Find Full Text PDF

Proton-induced nuclear reactions for generation of (99)Mo and (99m)Tc radionuclides were investigated using the stacked-foil activation technique on 99.05% enriched (100)Mo targets at energies up to Ep=21MeV. Excitation functions of the reactions (100)Mo(p,x)(99)Mo and (100)Mo(p,2n)(99m)Tc have been measured.

View Article and Find Full Text PDF