Beyond their clinical use as selective estrogen receptor modulators (SERMs), raloxifene and tamoxifen have attracted recent attention for their favorable activity against a broad range of dangerous human pathogens. While consistently demonstrated to occur independently on classic estrogen receptors, the mechanisms underlying SERMs antimicrobial efficacy remain still poorly elucidated, but fundamental to benefit from repurposing strategies of these drugs. Macrophages are innate immune cells that protect from infections by rapidly reprogramming their metabolic state, particularly cholesterol disposal, which is at the center of an appropriate macrophage immune response as well as of the anabolic requirements of both the pathogen and the host cells.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease. The immunosuppressive functions of regulatory T lymphocytes (Tregs) are impaired in ALS, and correlate to disease progression. The phase 2a IMODALS trial reported an increase in Treg number in ALS patients following the administration of low-dose (ld) interleukin-2 (IL-2).
View Article and Find Full Text PDFUnlabelled: Artificial intelligence (AI)-powered approaches are becoming increasingly used as histopathologic tools to extract subvisual features and improve diagnostic workflows. On the other hand, hi-plex approaches are widely adopted to analyze the immune ecosystem in tumor specimens. Here, we aimed at combining AI-aided histopathology and imaging mass cytometry (IMC) to analyze the ecosystem of non-small cell lung cancer (NSCLC).
View Article and Find Full Text PDFRaloxifene belongs to the family of Selective Estrogen Receptor Modulators (SERMs), which are drugs widely prescribed for Estrogen Receptor alpha (ERα)-related pathologies. Recently, SERMs are being tested in repurposing strategies for ERα-independent clinical indications, including a wide range of microbial infections. Macrophages are central in the fight against pathogen invasion.
View Article and Find Full Text PDFWHIM syndrome is an inherited immune disorder caused by an autosomal dominant heterozygous mutation in CXCR4. The disease is characterized by neutropenia/leukopenia (secondary to retention of mature neutrophils in bone marrow), recurrent bacterial infections, treatment-refractory warts, and hypogammaglobulinemia. All mutations reported in WHIM patients lead to the truncations in the C-terminal domain of CXCR4, R334X being the most frequent.
View Article and Find Full Text PDFIntroduction: Adult-type diffuse gliomas are malignant primary brain tumors characterized by very poor prognosis. Dendritic cells (DCs) are key in priming antitumor effector functions in cancer, but their role in gliomas remains poorly understood.
Methods: In this study, we characterized tumor-infiltrating DCs (TIDCs) in adult patients with newly diagnosed diffuse gliomas by using multi-parametric flow cytometry and single-cell RNA sequencing.
ACKR2 is an atypical chemokine receptor which is structurally uncoupled from G proteins and is unable to activate signaling pathways used by conventional chemokine receptors to promote cell migration. Nonetheless, ACKR2 regulates inflammatory and immune responses by shaping chemokine gradients in tissues scavenging inflammatory chemokines. To investigate the signaling pathways downstream to ACKR2, a quantitative SILAC-based phosphoproteomic analysis coupled with a systems biology approach with network analysis, was carried out on a HEK293 cell model expressing either ACKR2 or its conventional counterpart CCR5.
View Article and Find Full Text PDFIn this article, we review the role of mathematical modelling to elucidate the impact of tumor-associated macrophages (TAMs) in tumor progression and therapy design. We first outline the biology of TAMs, and its current application in tumor therapies, and their experimental methods that provide insights into tumor cell-macrophage interactions. We then focus on the mechanistic mathematical models describing the role of macrophages as drug carriers, the impact of macrophage polarized activation on tumor growth, and the role of tumor microenvironment (TME) parameters on the tumor-macrophage interactions.
View Article and Find Full Text PDFFibrosis is a progressive biological condition, leading to organ dysfunction in various clinical settings. Although fibroblasts and macrophages are known as key cellular players for fibrosis development, a comprehensive functional model that considers their interaction in the metabolic/immunologic context of fibrotic tissue has not been set up. Here we show, by transcriptome-based mathematical modeling in an in vitro system that represents macrophage-fibroblast interplay and reflects the functional effects of inflammation, hypoxia and the adaptive immune context, that irreversible fibrosis development is associated with specific combinations of metabolic and inflammatory cues.
View Article and Find Full Text PDFMonocytes are critical cells of the immune system but their role as effectors is relatively poorly understood, as they have long been considered only as precursors of tissue macrophages or dendritic cells. Moreover, it is known that this cell type is heterogeneous, but our understanding of this aspect is limited to the broad classification in classical/intermediate/non-classical monocytes, commonly based on their expression of only two markers, i.e.
View Article and Find Full Text PDFBeyond the wide use of tamoxifen in breast cancer chemotherapy due to its estrogen receptor antagonist activity, this drug is being assayed in repurposing strategies against a number of microbial infections. We conducted a literature search on the evidence related with tamoxifen activity in macrophages, since these immune cells participate as a first line-defense against pathogen invasion. Consistent data indicate the existence of estrogen receptor-independent targets of tamoxifen in macrophages that include lipid mediators and signaling pathways, such as NRF2 and caspase-1, which allow these cells to undergo phenotypic adaptation and potentiate the inflammatory response, without the induction of cell death.
View Article and Find Full Text PDFBackground: Immunotherapeutic early-phase clinical trials (ieCTs) increasingly adopt large expansion cohorts exploring novel agents across different tumor types. High-grade glioma (HGG) patients are usually excluded from these trials.
Methods: Data of patients with recurrent HGGs treated within multicohort ieCTs between February 2014 and August 2019 (experimental group, EG) at our Phase I Unit were retrospectively reviewed and compared to a matched control group (CG) of patients treated with standard therapies.
Macrophages play a central role within the tumor microenvironment, with relevant implications for tumor progression. The modulation of their phenotype is one of the mechanisms used by tumors to escape from effective immune responses. This study was designed to analyze the influence of soluble products released by tumors, here represented by the tumor-conditioned media of two tumor cell lines (3LL from Lewis lung carcinoma and MN/MCA from fibrosarcoma), on murine macrophage differentiation and polarization in vitro.
View Article and Find Full Text PDFSex differences in immune-mediated diseases are linked to the activity of estrogens on innate immunity cells, including macrophages. Tamoxifen (TAM) is a selective estrogen receptor modulator (SERM) used in estrogen receptor-alpha (ERα)-dependent breast cancers and off-target indications such as infections, although the immune activity of TAM and its active metabolite, 4-OH tamoxifen (4HT), is poorly characterized. Here, we aimed at investigating the endocrine and immune activity of these SERMs in macrophages.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis is a fatal neurodegenerative disease causing upper and lower motor neuron loss and currently no effective disease-modifying treatment is available. A pathological feature of this disease is neuroinflammation, a mechanism which involves both CNS-resident and peripheral immune system cells. Regulatory T-cells are immune-suppressive agents known to be dramatically and progressively decreased in patients with amyotrophic lateral sclerosis.
View Article and Find Full Text PDFThe membrane-spanning 4A (MS4A) family includes 18 members with a tetraspan structure in humans. They are differentially and selectively expressed in immunocompetent cells, such as B cells (CD20/MS4A1) and macrophages (MS4A4A), and associate with, and modulate the signaling activity of, different classes of immunoreceptor, including pattern recognition receptors (PRRs) and Ig receptors. Evidence from preclinical models and genetic evidence from humans suggest that members of the MS4A family have key roles in different pathological settings, including cancer, infectious diseases, and neurodegeneration.
View Article and Find Full Text PDFThe MS4A gene family encodes 18 tetraspanin-like proteins, most of which with unknown function. MS4A1 (CD20), MS4A2 (FcεRIβ), MS4A3 (HTm4), and MS4A4A play important roles in immunity, whereas expression and function of other members of the family are unknown. The present investigation was designed to obtain an expression fingerprint of MS4A family members, using bioinformatics analysis of public databases, RT-PCR, and protein analysis when possible.
View Article and Find Full Text PDFPrognostic studies are increasingly providing new tools to stratify colo-rectal liver metastasis patients into clinical subgroups, with remarkable implications in terms of clinical management and therapeutic choice. Here, the strengths and hurdles of current prognostic tools in colo-rectal liver metastasis are discussed. Alongside more classic histopathological parameters, which capture features related to the tumor component, such as tumor invasion, tumor growth pattern and regression score, we will discuss immune mediators, which are starting to be considered important features.
View Article and Find Full Text PDFThe inflammatory human chemokine CXCL5 interacts with the G protein-coupled receptor CXCR2 to induce chemotaxis and activation of neutrophils. CXCL5 also has weak agonist activity toward CXCR1. The N-terminus of CXCL5 can be modified by proteolytic cleavage or deimination of Arg to citrulline (Cit), and these modifications can occur separately or together.
View Article and Find Full Text PDFThe atypical chemokine receptor ACKR2, formerly named D6, is a scavenger chemokine receptor with a non-redundant role in the control of inflammation and immunity. The scavenging activity of ACKR2 depends on its trafficking properties, which require actin cytoskeleton rearrangements downstream of a β-arrestin1-Rac1-PAK1-LIMK1-cofilin-dependent signaling pathway. We here demonstrate that in basal conditions, ACKR2 trafficking properties require intact actin and microtubules networks.
View Article and Find Full Text PDFThe metabolic and immune adaptation to extracellular signals allows macrophages to carry out specialized functions involved in immune protection and tissue homeostasis. Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that coordinates cell redox and metabolic responses to stressors. However, the individual and concomitant activation of NRF2 and inflammatory pathways have been poorly investigated in isolated macrophages.
View Article and Find Full Text PDFGiven its pleiotropic functions, including its prominent role in inflammation, immune responses and cancer, the C-X-C chemokine receptor type 4 (CXCR4) has gained significant attention in recent years and has become a relevant target in drug development. Although the signaling properties of CXCR4 have been extensively studied, several aspects deserve deeper investigations. Mutations in the C-term tail of the CXCR4 gene cause WHIM syndrome, a rare congenital immunodeficiency associated by chronic leukopenia.
View Article and Find Full Text PDFBackground: Low-dose interleukin-2 (ld-IL-2) enhances regulatory T-cell (Treg) function in auto-inflammatory conditions. Neuroinflammation being a pathogenic feature of amyotrophic lateral sclerosis (ALS), we evaluated the pharmacodynamics and safety of ld-IL-2 in ALS subjects.
Methods: We performed a single centre, parallel three-arm, randomised, double-blind, placebo-controlled study.
Deciphering the molecular alterations leading to disease initiation and progression is currently crucial to identify the most relevant targets for precision therapy in cancer patients. Cancers express a complex chemokine network influencing leucocyte infiltration and angiogenesis. Moreover, malignant cells also express a selective repertoire of chemokine receptors that sustain their growth and spread.
View Article and Find Full Text PDF