The paper considers nonsmooth neural networks described by a class of differential inclusions termed differential variational inequalities (DVIs). The DVIs include the relevant class of neural networks, introduced by Li, Michel and Porod, described by linear systems evolving in a closed hypercube of R(n). The main result in the paper is a necessary and sufficient condition for multistability of DVIs with nonsymmetric and cooperative (nonnegative) interconnections between neurons.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
September 2012
Recent papers have pointed out the interest to study convergence in the presence of multiple equilibrium points (EPs) (multistability) for neural networks (NNs) with nonsymmetric cooperative (nonnegative) interconnections and neuron activations modeled by piecewise linear (PL) functions. One basic difficulty is that the semiflows generated by such NNs are monotone but, due to the horizontal segments in the PL functions, are not eventually strongly monotone (ESM). This notwithstanding, it has been shown that there are subclasses of irreducible interconnection matrices for which the semiflows, although they are not ESM, enjoy convergence properties similar to those of ESM semiflows.
View Article and Find Full Text PDFIEEE Trans Neural Netw
April 2011
This brief considers a class of delayed full-range (FR) cellular neural networks (CNNs) with uncertain interconnections between neurons modeled by means of intervalized matrices. Using mathematical tools from the theory of differential inclusions, a fundamental result on global robust stability of standard (S) CNNs is extended to prove global robust exponential stability for the corresponding class (same interconnection weights and inputs) of FR-CNNs. The result is of theoretical interest since, in general, the equivalence between the dynamical behavior of FR-CNNs and S-CNNs is not guaranteed.
View Article and Find Full Text PDF