Publications by authors named "Massimo Gandolfi"

This paper explores the chemistry of mercury as described in ancient alchemical literature. Alchemy's focus on the knowledge and manipulation of natural substances is not so different from modern chemistry's purposes. The great divide between the two is marked by the way of conceptualizing and recording their practices.

View Article and Find Full Text PDF

The aim of this work was to develop an innovative drug delivery system potentially useful for the local delivery of Bisphosphonates to bone tissue. We propose the use of Solid Lipid Microparticles (MPs), up to now mainly used for oral and topical drug delivery, as carrier for bisphosphonates due to the favourable biocompatibility and lower toxicity of the lipids compared with many polymers. The delivery platform consisted of a biomimetic α-tricalcium phosphate-gelatin cement (CPC) enriched with alendronate loaded MPs (MPs-AL) produced by the spray congealing technology.

View Article and Find Full Text PDF

15-crown[5] or 18-crown[6] complexes of alkali, transition metal and ammonium cations together with polyprotic inorganic and organic anions have been used to construct crystalline molecular salts based on hydrogen bonded anionic networks. This new class of organic-inorganic complexes displays a variety of crystal-to-crystal transformations, mainly associated to the loss/uptake of water molecules and/or to the ionic reorganization accompanying phase transitions on varying the temperature. The dehydration and phase transition processes have been investigated by DSC, TGA and variable temperature X-ray powder diffraction.

View Article and Find Full Text PDF

18-Crown[6] ether has been used to prepare a new class of organic-inorganic complexes of general formula 18-crown[6]M[HSO(4)](n) (where M = NH(4) (+), K(+), Sr(2+) and n = 1, 2) by reacting directly in solution or in the solid state the crown ether 18-crown[6] with inorganic salts such as [NH(4)][HSO(4)], K[HSO(4)], and Sr[HSO(4)](2). The structures of 18-crown[6][NH(4)][HSO(4)]2 H(2)O (12 H(2)O), 18-crown[6][NH(4)][HSO(4)] (1), 18-crown[6]K[HSO(4)]2 H(2)O (22 H(2)O), 18-crown[6]K[HSO(4)] (2), and 18-crown[6]Sr[HSO(4)](2) (3) have been characterized by single-crystal X-ray diffraction. The reversible water loss in compounds 12 H(2)O and 22 H(2)O leads to formation of the corresponding anhydrous phases 18-crown[6][NH(4)][HSO(4)] (1), and 18-crown[6]K[HSO(4)] (2), which undergo, on further heating, enantiotropic solid-solid transitions very likely associated with the on-set of a solid state dynamical process.

View Article and Find Full Text PDF