Publications by authors named "Massimo Bottini"

Article Synopsis
  • The research focuses on enhancing the enzymatic activity of Zn-based single-atom nanozymes (SAzymes) for disease treatment by doping them with boron (B), which improves their biocompatibility.
  • By carbonizing a zinc-boron framework at various temperatures, a new form of B-doped Zn-based SAzymes (Zn-SAs@BNC) was created, leading to a modified electron configuration that boosts catalytic activity significantly.
  • The resulting Zn-SAs@BNC demonstrated impressive tumor-killing capabilities, underscoring its potential as an effective strategy for developing efficient anti-tumor therapies.
View Article and Find Full Text PDF

In the era of renewed space exploration, comprehending the effects of the space environment on human health, particularly for deep space missions, is crucial. While extensive research exists on the impacts of spaceflight, there is a gap regarding female reproductive risks. We hypothesize that space stressors could have enduring effects on female health, potentially increasing risks for future pregnancies upon return to Earth, particularly related to small-for-gestational-age (SGA) fetuses.

View Article and Find Full Text PDF

The treatment of breast cancer bone metastasis is an unresolved clinical challenge, mostly because currently therapeutic approaches cannot simultaneously block the tumor growth and repair the osteolytic bone injuries at the metastatic site. Herein, the study develops a novel nanomedicine to treat breast cancer bone metastasis. The nanomedicine is based on phosphate ion-responsive and calcium peroxide-based nanoparticles carrying the bone-targeting agent zoledronic acid on the surface and loaded with the photosensitizer indocyanine green.

View Article and Find Full Text PDF

Tumor metastasis remains a major challenge in cancer management. Among various treatment strategies, immune cell-based cancer therapy holds a great potential for inhibiting metastasis. However, its wide application in cancer therapy is restricted by complex preparations, as well as inadequate homing and controllability.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found a special mix of tiny molecules called microRNAs that can help understand and fix damage caused by radiation in space.
  • They did experiments to see how a treatment using three different microRNAs could help protect cells from this damage by reducing inflammation and improving cell functions.
  • The results from astronauts in different space missions showed that this treatment might help astronauts stay healthier during long space trips.
View Article and Find Full Text PDF

Mineralization-competent cells, including hypertrophic chondrocytes, mature osteoblasts, and osteogenic-differentiated smooth muscle cells secrete media extracellular vesicles (media vesicles) and extracellular vesicles bound to the extracellular matrix (matrix vesicles). Media vesicles are purified directly from the extracellular medium. On the other hand, matrix vesicles are purified after discarding the extracellular medium and subjecting the cells embedded in the extracellular matrix or bone or cartilage tissues to an enzymatic treatment.

View Article and Find Full Text PDF

Matrix vesicles are a special class of extracellular vesicles thought to actively contribute to both physiologic and pathologic mineralization. Proteomic studies have shown that matrix vesicles possess high amounts of annexin A5, suggesting that the protein might have multiple roles at the sites of calcification. Currently, Annexin A5 is thought to promote the nucleation of apatitic minerals close to the inner leaflet of the matrix vesicles' membrane enriched in phosphatidylserine and Ca.

View Article and Find Full Text PDF

Herein, carbon dot (CD)-supported Fe single-atom nanozymes with high content of pyrrolic N and ultrasmall size (ph-CDs-Fe SAzyme) are fabricated by a phenanthroline-mediated ligand-assisted strategy. Compared with phenanthroline-free nanozymes (CDs-Fe SAzyme), ph-CDs-Fe SAzyme exhibit higher peroxidase (POD)-like activity due to their structure similar to that of ferriporphyrin in natural POD. Aberration-corrected high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption fine structure spectroscopy (XAFS) analyses show that metal Fe is dispersed in ph-CDs-Fe SAzyme as single atoms.

View Article and Find Full Text PDF

Tissue engineering offers attractive strategies to develop three-dimensional scaffolds mimicking the complex hierarchical structure of the native bone. The bone is formed by cells incorporated in a molecularly organized extracellular matrix made of an inorganic phase, called biological apatite, and an organic phase mainly made of collagen and noncollagenous macromolecules. Although many strategies have been developed to replicate the complexity of bone at the nanoscale , a critical challenge has been to control the orchestrated process of mineralization promoted by bone cells and replicate the anatomical and biological properties of native bone.

View Article and Find Full Text PDF

Matrix vesicles (MVs) contain the whole machinery necessary to initiate apatite formation in their lumen. We suspected that, in addition to tissue-nonspecific alkaline phosphatase (TNAP), Na,K,-ATPase (NKA) could be involved in supplying phopshate (P) in the early stages of MV-mediated mineralization. MVs were extracted from the growth plate cartilage of chicken embryos.

View Article and Find Full Text PDF

Strontium acetate is applied for dental hypersensitivity treatment; however, the use of strontium carbonates for this purpose has not been described. The use of Sr-carbonate nanoparticles takes advantage of both the benefits of strontium on dentin mineralization and the abrasive properties of carbonates. Here in, we aimed to synthesize strontium carbonate and strontium-substituted calcium carbonate nanoparticles and test them as potential compounds in active dentifrices for treating dental hypersensitivity.

View Article and Find Full Text PDF

The biochemical machinery involved in matrix vesicles-mediated bone mineralization involves a specific set of lipids, enzymes, and proteins. Annexins, among their many functions, have been described as responsible for the formation and stabilization of the matrix vesicles' nucleational core. However, the specific role of each member of the annexin family, especially in the presence of type-I collagen, remains to be clarified.

View Article and Find Full Text PDF

This report describes the innovative application of high sensitivity Boron-doped nanocrystalline diamond microelectrodes for tracking small changes in Ca concentration due to binding to Annexin-A5 inserted into the lipid bilayer of liposomes (proteoliposomes), which could not be assessed using common Ca selective electrodes. Dispensing proteoliposomes to an electrolyte containing 1 mM Ca resulted in a potential jump that decreased with time, reaching the baseline level after ~300 s, suggesting that Ca ions were incorporated into the vesicle compartment and were no longer detected by the microelectrode. This behavior was not observed when liposomes (vesicles without AnxA5) were dispensed in the presence of Ca.

View Article and Find Full Text PDF

Matrix vesicles (MVs) are a special class of extracellular vesicles released by mineralizing cells during bone and tooth mineralization that initiate the precipitation of apatitic minerals by regulating the extracellular ratio between inorganic phosphate (P), a calcification promoter, and pyrophosphate (PP), a calcification inhibitor. The P/PP ratio is thought to be controlled by two ecto-phosphatases present on the outer leaflet of the MVs' membrane: ectonucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) that produces PP as well as P from ATP and tissue-nonspecific alkaline phosphatase (TNAP) that hydrolyzes both ATP and PP to generate P. However, if and how these enzymes act in concert in MVs are still unclear.

View Article and Find Full Text PDF

Inspired by the composition and confined environment provided by collagen fibrils during bone formation, this study aimed to compare two different strategies to synthesize bioactive hybrid membranes and to assess the role the organic matrix plays as physical confinement during mineral phase deposition. The hybrid membranes were prepared by (1) incorporating calcium phosphate in a biopolymeric membrane for in situ hydroxyapatite (HAp) precipitation in the interstices of the biopolymeric membrane as a confined environment (Methodology 1) or (2) adding synthetic HAp nanoparticles (SHAp) to the freshly prepared biopolymeric membrane (Methodology 2). The biopolymeric membranes were based on hydrolyzed collagen (HC) and chitosan (Cht) or κ-carrageenan (κ-carr).

View Article and Find Full Text PDF

The use of Curcumin (CR) as a bioactive molecule to prevent and treat inflammation- related diseases is widespread. However, the high hydrophobicity hinders the in vivo bioavailability of CR, reducing its therapeutic index. In the present study, we described the use of nanoparticles (NPs) made of kappa-carrageenan (κ-Carr), a sulphated polysaccharide, as cost-effective, biodegradable and biocompatible CR carriers.

View Article and Find Full Text PDF

Poly (ethylene glycol) (PEG) is a widely used polymer in a variety of consumer products and in medicine. PEGylation refers to the conjugation of PEG to drugs or nanoparticles to increase circulation time and reduce unwanted host responses. PEG is viewed as being well-tolerated, but previous studies have identified anti-PEG antibodies and so-called pseudoallergic reactions in certain individuals.

View Article and Find Full Text PDF

Matrix vesicles (MVs) are 100-300 nm spherical structures released by mineralization competent cells to initiate formation of apatite, the mineral component in bones. Among proteins present in MVs, annexin A6 (AnxA6) is thought to be ubiquitously distributed in the MVs' lumen, on the surface of the internal and external leaflets of the membrane and also inserted in the lipid bilayer. To determine the molecular mechanism(s) that lead to the different locations of AnxA6, we hypothesized the occurrence of a pH drop during the mineralization.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are lipid bilayer-enclosed nanosized particles released by all cell types during physiological as well as pathophysiological processes to carry out diverse biological functions, including acting as sources of cellular dumping, signalosomes and mineralisation nanoreactors. The ability of EVs to perform specific biological functions is due to their biochemical machinery. Among the components of the EVs' biochemical machinery, surface proteins are of critical functional significance as they mediate the interactions of EVs with components of the extracellular milieu, the extracellular matrix and neighbouring cells.

View Article and Find Full Text PDF

A central paradigm in nanomedicine is that when synthetic nanoparticles (NPs) enter the body, they are immediately cloaked by a corona of macromolecules (mostly proteins) that mediates the role of the physico-chemical properties in the NP biological functions (the "coronation paradigm"). In this work, we focused on the assessment of the "coronation paradigm" for cationic NPs (cNPs) used as rheumatoid arthritis (RA) drugs due to their ability to scavenge cell-free DNA (cfDNA). We fabricated series of cNPs uniformly coated with single or di-hydroxyl groups and different types of amino groups and showed that hydroxylated nanoparticles displayed a prolonged retention in inflamed joints and greater anti-inflammatory effect in collagen-induced arthritis (CIA) rats than the non-hydroxylated analogues.

View Article and Find Full Text PDF

The bones can be viewed as both an organ and a material. As an organ, the bones give structure to the body, facilitate skeletal movement, and provide protection to internal organs. As a material, the bones consist of a hybrid organic/inorganic three-dimensional (3D) matrix, composed mainly of collagen, noncollagenous proteins, and a calcium phosphate mineral phase, which is formed and regulated by the orchestrated action of a complex array of cells including chondrocytes, osteoblasts, osteocytes, and osteoclasts.

View Article and Find Full Text PDF

Polymethylmethacrylate (PMMA)-based cements are used for bone reparation due to their biocompatibility, suitable mechanical properties, and mouldability. However, these materials suffer from high exothermic polymerization and poor bioactivity, which can cause the formation of fibrous tissue around the implant and aseptic loosening. Herein, we tackled these problems by adding Sr -substituted hydroxyapatite nanoparticles (NPs) and a porogenic compound to the formulations, thus creating a microenvironment suitable for the proliferation of osteoblasts.

View Article and Find Full Text PDF

Bone biomineralization is an exquisite process by which a hierarchically organized mineral matrix is formed. Growing evidence has uncovered the involvement of one class of extracellular vesicles, named matrix vesicles (MVs), in the formation and delivery of the first mineral nuclei to direct collagen mineralization. MVs are released by mineralization-competent cells equipped with a specific biochemical machinery to initiate mineral formation.

View Article and Find Full Text PDF