Publications by authors named "Massimiliano Mattei"

This paper deals with the design of a decentralized guidance and control strategy for a swarm of unmanned aerial vehicles (UAVs), with the objective of maintaining a given connection topology with assigned mutual distances while flying to a target area. In the absence of obstacles, the assigned topology, based on an extended Delaunay triangulation concept, implements regular and connected formation shapes. In the presence of obstacles, this technique is combined with a model predictive control (MPC) that allows forming independent sub-swarms optimizing the formation spreading to avoid obstacles and collisions between neighboring vehicles.

View Article and Find Full Text PDF

This article proposes a novel approach to the Distributed State Estimation (DSE) problem for a set of co-operating UAVs equipped with heterogeneous on board sensors capable of exploiting certain characteristics typical of the UAS Traffic Management (UTM) context, such as high traffic density and the presence of limited range, Vehicle-to-Vehicle communication devices. The proposed algorithm is based on a scalable decentralized Kalman Filter derived from the Internodal Transformation Theory enhanced on the basis of the Consensus Theory. The general benefit of the proposed algorithm consists of, on the one hand, reducing the estimation problem to smaller local sub-problems, through a self-organization process of the local estimating nodes in response to the time varying communication topology; and on the other hand, of exploiting measures carried out nearby in order to improve the accuracy of the local estimates.

View Article and Find Full Text PDF