Publications by authors named "Massimiliano G. Bianchi"

Bifidobacteria are well known as common and abundant colonizers of the human gut and are able to exert multiple beneficial effects on their host, although the cooperative and competitive relationships that may occur among bifidobacterial strains are still poorly investigated. Therefore, to dissect possible molecular interactions among bifidobacterial species that typically colonize the human gut, three previously identified bifidobacterial prototypes, i.e.

View Article and Find Full Text PDF

Unlabelled: Bifidobacteria are recognized as health-promoting bacteria that reside in the human gut, helping in the digestion of fiber, preventing infections, and producing essential compounds like vitamins. To date, subsp. , together with , , and , represents one of the species that are used as probiotic bacteria.

View Article and Find Full Text PDF

The microbial ecology of raw milk cheeses is determined by bacteria originating from milk and milk-producing animals. Recently, it has been shown that members of the species may become transmitted along the Parmigiano Reggiano cheese production chain and ultimately may colonize the consumer intestine. However, there is a lack of knowledge regarding the molecular mechanisms that mediate the interaction between and the human gut.

View Article and Find Full Text PDF

B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) blasts strictly depend on the transport of extra-cellular asparagine (Asn), yielding a rationale for L-asparaginase (ASNase) therapy. However, the carriers used by ALL blasts for Asn transport have not been identified yet. Exploiting RS4;11 cells as BCP-ALL model, we have found that cell Asn is lowered by either silencing or inhibition of the transporters ASCT2 or SNAT5.

View Article and Find Full Text PDF

This study investigated the impact of available colon-mango (poly)phenols on stress-induced impairment of intestinal barrier function. Caco-2/HT29-MTX cells were incubated with six extracts of ileal fluid collected pre- and 4-8 h post-mango consumption before being subjected to inflammatory stress. (Poly)phenols in ileal fluids were analysed by UHPLC-HR-MS.

View Article and Find Full Text PDF

Members of the genus are among the first microorganisms colonizing the human gut. Among these species, strains of are known to be commonly transmitted from mother to her newborn, while this species has also been linked with activities supporting human wellbeing. In the current study, an approach, guided by ecology- and phylogenome-based analyses, was employed to identify a representative strain of to be exploited as a novel health-promoting candidate.

View Article and Find Full Text PDF

Bifidobacteria are among the first microbial colonizers of the human gut, being frequently associated with human health-promoting activities. In the current study, an methodology based on an ecological and phylogenomic-driven approach allowed the selection of a prototype strain, i.e.

View Article and Find Full Text PDF

Amorphous silica nanoparticles (ASNP) are among the nanomaterials that are produced in large quantities. ASNP have been present for a long time in several fast-moving consumer products, several of which imply exposure of the gastrointestinal tract, such as toothpastes, food additives, drug excipients, and carriers. Consolidated use and experimental evidence have consistently pointed to the very low acute toxicity and limited absorption of ASNP.

View Article and Find Full Text PDF

Bifidobacteria are commensal microorganisms that typically inhabit the mammalian gut, including that of humans. As they may be vertically transmitted, they commonly colonize the human intestine from the very first day following birth and may persist until adulthood and old age, although generally at a reduced relative abundance and prevalence compared to infancy. The ability of bifidobacteria to persist in the human intestinal environment has been attributed to genes involved in adhesion to epithelial cells and the encoding of complex carbohydrate-degrading enzymes.

View Article and Find Full Text PDF

Background/purpose: Testing of dental materials when in contact with innate immune cells has been so far hindered by the lack of proper models. Human primary monocyte-derived macrophages (MDMs) would be an excellent option to this aim. However, the inability to detach them from the tissue culture plates contrast the possibility to culture them on biomaterials.

View Article and Find Full Text PDF

/SNAT5 is a system N transporter that can mediate net inward or outward transmembrane fluxes of neutral amino acids coupled with Na (symport) and H (antiport). Its preferential substrates are not only amino acids with side chains containing amide (glutamine and asparagine) or imidazole (histidine) groups, but also serine, glycine, and alanine are transported by the carrier. Expressed in the pancreas, intestinal tract, brain, liver, bone marrow, and placenta, it is regulated at mRNA and protein levels by mTORC1 and WNT/β-catenin pathways, and it is sensitive to pH, nutritional stress, inflammation, and hypoxia.

View Article and Find Full Text PDF

Although compositional variation in the gut microbiome during human development has been extensively investigated, strain-resolved dynamic changes remain to be fully uncovered. In the current study, shotgun metagenomic sequencing data of 12,415 fecal microbiomes from healthy individuals are employed for strain-level tracking of gut microbiota members to elucidate its evolving biodiversity across the human life span. This detailed longitudinal meta-analysis reveals host sex-related persistence of strains belonging to common, maternally-inherited species, such as Bifidobacterium bifidum and Bifidobacterium longum subsp.

View Article and Find Full Text PDF

Oral administration of nanoparticles (NPs) is a promising strategy to overcome solubility and stability issues of many active compounds. However, this route faces major obstacles related to the hostile gastrointestinal (GI) environment, which impairs the efficacy of orally administered nanomedicines. Here, we propose nanocomposites as a promising approach to increase the retention time of NPs in the intestinal tract by using bio- and mucoadhesive matrixes able to protect the cargo until it reaches the targeted area.

View Article and Find Full Text PDF

Multiple millennia of human evolution have shaped the chemical composition of breast milk toward an optimal human body fluid for nutrition and protection and for shaping the early gut microbiota of newborns. This biological fluid is composed of water, lipids, simple and complex carbohydrates, proteins, immunoglobulins, and hormones. Potential interactions between hormones present in mother's milk and the microbial community of the newborn are a very fascinating yet unexplored topic.

View Article and Find Full Text PDF

Bifidobacteria are extensively exploited for the formulation of probiotic food supplements due to their claimed ability to exert health-beneficial effects upon their host. However, most commercialized probiotics are tested and selected for their safety features rather than for their effective abilities to interact with the host and/or other intestinal microbial players. In this study, we applied an ecological and phylogenomic-driven selection to identify novel subsp.

View Article and Find Full Text PDF

The genomic era has resulted in the generation of a massive amount of genetic data concerning the genomic diversity of bacterial taxa. As a result, the microbiological community is increasingly looking for ways to define reference bacterial strains to perform experiments that are representative of the entire bacterial species. Despite this, there is currently no established approach allowing a reliable identification of reference strains based on a comprehensive genomic, ecological, and functional context.

View Article and Find Full Text PDF

Amorphous silica nanoparticles (ASNP) are present in a variety of products and their biological effects are actively investigated. Although several studies have documented pro-inflammatory effects of ASNP, the possibility that they also modify the response of innate immunity cells to natural activators has not been thoroughly investigated. Here, we study the effects of pyrogenic ASNP on the LPS-dependent activation of human macrophages differentiated from peripheral blood monocytes.

View Article and Find Full Text PDF

Background: Clinical and experimental evidence point to a dysregulated immune response caused by SARS-CoV-2 as the primary mechanism of lung disease in COVID-19. However, the pathogenic mechanisms underlying COVID-19-associated ARDS (Acute Respiratory Distress Syndrome) remain incompletely understood. This study aims to explore the inflammatory responses of alveolar epithelial cells to either the spike S1 protein or to a mixture of cytokines secreted by S1-activated macrophages.

View Article and Find Full Text PDF

Mechanisms underlying the resistance of acute lymphoblastic leukemia (ALL) blasts to l-asparaginase are still incompletely known. Here we demonstrate that human primary bone marrow mesenchymal stromal cells (MSCs) successfully adapt to l-asparaginase and markedly protect leukemic blasts from the enzyme-dependent cytotoxicity through an amino acid trade-off. ALL blasts synthesize and secrete glutamine, thus increasing extracellular glutamine availability for stromal cells.

View Article and Find Full Text PDF

Within the bone marrow hematopoietic cells are in close connection with mesenchymal stromal cells (MSCs), which influence the behavior and differentiation of normal or malignant lymphoid and myeloid cells. Altered cell metabolism is a hallmark of cancer, and changes in nutrient pools and fluxes are important components of the bidirectional communication between MSCs and hematological cancer cells. Among nutrients, amino acids play a significant role in cancer progression and chemo-resistance.

View Article and Find Full Text PDF

Multiple myeloma (MM) cells consume huge amounts of glutamine and, as a consequence, the amino acid concentration is lower-than-normal in the bone marrow (BM) of MM patients. Here we show that MM-dependent glutamine depletion induces glutamine synthetase in stromal cells, as demonstrated in BM biopsies of MM patients, and reproduced in vitro by co-culturing human mesenchymal stromal cells (MSCs) with MM cells. Moreover, glutamine depletion hinders osteoblast differentiation of MSCs, which is also severely blunted by the spent, low-glutamine medium of MM cells, and rescued by glutamine restitution.

View Article and Find Full Text PDF

In vitro studies have consistently shown that titanium surface wettability affects the response of osteoprogenitors, leading to important advances in the clinical osseointegration of dental implants. However, the underlying molecular mechanisms remain unknown. Since surface conditioning by blood components initiates within milliseconds after insertion, it is reasonable to hypothesize that the amount and the type of blood proteins adsorbed influences the interaction between the implant surface and osteoprogenitors.

View Article and Find Full Text PDF

Previous work has demonstrated that precipitated (NM-200) and pyrogenic (NM-203) Amorphous Silica Nanoparticles (ASNPs) elicit the inflammatory activation of murine macrophages, with more pronounced effects observed with NM-203. Here, we compare the effects of low doses of NM-200 and NM-203 on human macrophage-like THP-1 cells, assessing how the pre-exposure to these nanomaterials affects the cell response to lipopolysaccharide (LPS). Cell viability was affected by NM-203, but not by NM-200, and only in the presence of LPS.

View Article and Find Full Text PDF

The data included in this paper are associated with a research article entitled 'Differences in toxicity, mitochondrial function and miRNome in human cells exposed to Cd as CdS quantum dots or ionic Cd' [1]. The article concerns the use of miRNAs as biomarkers for engineered nanomaterials (ENMs) risk assessment. Two different type of human cells, HepG2 and THP-1, were exposed to different forms of Cadmium: nanoscale, as CdS quantum dots (CdS QDs), and ionic, as CdSO 8/3 -hydrate (Cd(II)).

View Article and Find Full Text PDF

The inability of cells to adapt to increased environmental tonicity can lead to inflammatory gene expression and pathogenesis. The Rel family of transcription factors TonEBP and NF-κB p65 play critical roles in the switch from osmoadaptive homeostasis to inflammation, respectively. Here we identified PACT-mediated PKR kinase activation as a marker of the termination of adaptation and initiation of inflammation in embryonic fibroblasts.

View Article and Find Full Text PDF