With a combination of complementary experimental techniques, namely sedimentation assay, Fourier transform infrared spectroscopy, and x-ray absorption spectroscopy, we are able to determine the atomic structure around the metal-binding site in samples where amyloid-beta (Abeta) peptides are complexed with either Cu(II) or Zn(II). Exploiting information obtained on a selected set of fragments of the Abeta peptide, we identify along the sequence the histidine residues coordinated to the metal in the various peptides we have studied (Abeta(1-40), Abeta(1-16), Abeta(1-28), Abeta(5-23), and Abeta(17-40)). Our data can be consistently interpreted assuming that all of the peptides encompassing the minimal 1-16 amino acidic sequence display a copper coordination mode that involves three histidines (His(6), His(13), and His(14)).
View Article and Find Full Text PDFStaphylococcal gamma-hemolysins are bicomponent toxins forming a protein family with leucocidins and alpha-toxin. Two active toxins (AB and CB) can be formed combining one of the class-S components, HlgA or HlgC, with the class-F component HlgB. These two gamma-hemolysins form pores with marked similarities to alpha-toxin in terms of conductance, nonlinearity of the current-voltage curve, and channel stability in the open state.
View Article and Find Full Text PDFStaphylococcal gamma-haemolysins are bicomponent toxins in a family including other leucocidins and alpha-toxin. Two active toxins are formed combining HlgA or HlgC with HlgB. Both open pores in lipid membranes with conductance, current voltage characteristics and stability similar to alpha-toxin, but different selectivity (cation instead of anion).
View Article and Find Full Text PDF