Publications by authors named "Massimiliano Capriotti"

Objective: It has been shown that a new procedure (implicit function as squashing time, IFAST) based on artificial neural networks (ANNs) is able to compress eyes-closed resting electroencephalographic (EEG) data into spatial invariants of the instant voltage distributions for an automatic classification of mild cognitive impairment (MCI) and Alzheimer's disease (AD) subjects with classification accuracy of individual subjects higher than 92%.

Methods: Here we tested the hypothesis that this is the case also for the classification of individual normal elderly (Nold) vs. MCI subjects, an important issue for the screening of large populations at high risk of AD.

View Article and Find Full Text PDF

Objective. This paper presents the results obtained using a protocol based on special types of artificial neural networks (ANNs) assembled in a novel methodology able to compress the temporal sequence of electroencephalographic (EEG) data into spatial invariants for the automatic classification of mild cognitive impairment (MCI) and Alzheimer's disease (AD) subjects. With reference to the procedure reported in our previous study (2007), this protocol includes a new type of artificial organism, named TWIST.

View Article and Find Full Text PDF