Publications by authors named "Massimiliano Anselmi"

SHP2 is a tyrosine phosphatase that plays a regulatory role in multiple intracellular signaling cascades and is known to be oncogenic in certain contexts. In the absence of effectors, SHP2 adopts an autoinhibited conformation with its N-SH2 domain blocking the active site. Given the key role of N-SH2 in regulating SHP2, this domain has been extensively studied, often by X-ray crystallography.

View Article and Find Full Text PDF

SHP2 phosphatase plays an important role in regulating several intracellular signaling pathways. Pathogenic mutations of SHP2 cause developmental disorders and are linked to hematological malignancies and cancer. SHP2 comprises two tandemly-arranged SH2 domains, a catalytic PTP domain, and a disordered C-terminal tail.

View Article and Find Full Text PDF

Src-homology 2 (SH2) domains are protein interaction domains that bind to specific peptide motifs containing phosphotyrosine. SHP2, a tyrosine phosphatase encoded by PTPN11 gene, which has been emerged as positive or negative modulator in multiple signaling pathways, contains two SH2 domains, respectively, called N-SH2 and C-SH2. These domains play a relevant role in regulating SHP2 activity, either by recognizing its binding partners or by blocking its catalytic site.

View Article and Find Full Text PDF
Article Synopsis
  • SHP2 is a key protein that regulates various cellular functions, and mutations in it are associated with developmental disorders and cancers.
  • SHP2 consists of two linked SH2 domains, a catalytic domain, and a flexible C-terminal region, with activation relying on the specific binding of phosphopeptides to the SH2 domains.
  • Molecular simulations reveal that the two SH2 domains can adopt different orientations in solution, indicating that their structural flexibility is crucial for SHP2's ability to respond to stimuli and perform its functions effectively.
View Article and Find Full Text PDF

We produced a neuroglobin variant, namely, Ngb CDless, with the excised CDloop- and D-helix, directly joining the C- and E-helices. The CDless variant retained bis-His hexacoordination, and we investigated the role of the CDloop-D-helix unit in controlling the CO binding and structural dynamics by an integrative approach based on X-ray crystallography, rapid mixing, laser flash photolysis, resonance Raman spectroscopy, and molecular dynamics simulations. Rapid mixing and laser flash photolysis showed that ligand affinity was unchanged with respect to the wild-type protein, albeit with increased on and off constants for rate-limiting heme iron hexacoordination by the distal His64.

View Article and Find Full Text PDF

Protein intrinsically disordered regions (IDRs) play pivotal roles in molecular recognition and regulatory processes through structural disorder-to-order transitions. To understand and exploit the distinctive functional implications of IDRs and to unravel the underlying molecular mechanisms, structural disorder-to-function relationships need to be deciphered. The DNA site-specific recombinase system Cre/loxP represents an attractive model to investigate functional molecular mechanisms of IDRs.

View Article and Find Full Text PDF

The Src-homology-2 domain-containing phosphatase SHP2 is a critical regulator of signal transduction, being implicated in cell growth and differentiation. Activating mutations cause developmental disorders and act as oncogenic drivers in hematologic cancers. SHP2 is activated by phosphopeptide binding to the N-SH2 domain, triggering the release of N-SH2 from the catalytic PTP domain.

View Article and Find Full Text PDF

SHP2 is a protein tyrosine phosphatase (PTP) involved in multiple signaling pathways. Mutations of SHP2 can result in Noonan syndrome or pediatric malignancies. Inhibition of wild-type SHP2 represents a novel strategy against several cancers.

View Article and Find Full Text PDF
Article Synopsis
  • - SHP2 is a crucial enzyme involved in various signaling pathways and is linked to rare diseases and cancer, with mutations contributing to tumorigenesis and treatment resistance.
  • - The enzyme's structure features two Src homology 2 (SH2) domains that regulate its activity, with the N-SH2 domain blocking the active site until it binds to specific peptide motifs, triggering activation.
  • - Molecular dynamics simulations revealed important interactions that stabilize the binding of phosphopeptides to the N-SH2 domain, highlighting its conformational flexibility and providing insights into its regulatory mechanisms.
View Article and Find Full Text PDF

Germline PTPN11 mutations cause Noonan syndrome (NS), the most common disorder among RASopathies. PTPN11 encodes SHP2, a protein tyrosine-phosphatase controlling signaling through the RAS-MAPK and PI3K-AKT pathways. Generally, NS-causing PTPN11 mutations are missense changes destabilizing the inactive conformation of the protein or enhancing its binding to signaling partners.

View Article and Find Full Text PDF

Neuroglobin (Ngb) is predominantly expressed in neurons of the central and peripheral nervous systems and it clearly seems to be involved in neuroprotection. Engineering Ngb to observe structural and dynamic alterations associated with perturbation in ligand binding might reveal important structural determinants, and could shed light on key features related to its mechanism of action. Our results highlight the relevance of the CD loop and of Phe106 as distal and proximal controls involved in ligand binding in murine neuroglobin.

View Article and Find Full Text PDF

We present a detailed analysis of the X-ray absorption near-edge structure (XANES) data on the Fe K-edge of CO Myoglobin based on a combined procedure of Molecular Dynamics (MD) calculations and MXAN (Minuit XANes) data analysis that we call D-MXAN. The ability of performing quantitative XANES data analysis allows us to refine classical force field MD parameters, thus obtaining a reliable tool for the atomic investigation of this important model system for biological macromolecules. The iterative procedure here applied corrects the greatest part of the structural discrepancy between classical MD sampling and experimental determinations.

View Article and Find Full Text PDF

Primrose syndrome (PS) is a rare disorder characterized by macrocephaly, tall stature, intellectual disability, autistic traits, and disturbances of glucose metabolism with insulin-resistant diabetes and distal muscle wasting occurring in adulthood. The disorder is caused by functional dysregulation of ZBTB20, a transcriptional repressor controlling energetic metabolism and developmental programs. ZBTB20 maps in a genomic region that is deleted in the 3q13.

View Article and Find Full Text PDF
Article Synopsis
  • Germline mutations in the PTPN11 gene lead to Noonan syndrome (NS), a genetic disorder with diverse clinical symptoms affecting multiple systems in the body.
  • Researchers identified five specific missense mutations in unrelated NS patients that activate MAPK signaling, indicating a novel set of mutations related to the disorder.
  • The study suggests that the identified mutations result in a milder version of NS with fewer cardiac issues and less pronounced physical characteristics, alongside challenges in growth and cognitive behavior.
View Article and Find Full Text PDF

Molecular docking is extensively applied to determine the position of a ligand on its receptor despite the rather poor correspondence between docking scores and experimental binding affinities found in several studies, especially for systems structurally unrelated with those used in the scoring functions' training sets. Here, we present a method for the prediction of binding modes and binding free energies, which uses replica exchange molecular dynamics in combination with a receptor-shaped piecewise potential, confining the ligand in the proximity of the receptor surface and limiting the accessible conformational space of interest. We assess our methodology with a set of protein receptor-ligand test cases.

View Article and Find Full Text PDF

Transcription factors operate in developmental processes to mediate inductive events and cell competence, and perturbation of their function or regulation can dramatically affect morphogenesis, organogenesis, and growth. We report that a narrow spectrum of amino-acid substitutions within the transactivation domain of the v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog (MAF), a leucine zipper-containing transcription factor of the AP1 superfamily, profoundly affect development. Seven different de novo missense mutations involving conserved residues of the four GSK3 phosphorylation motifs were identified in eight unrelated individuals.

View Article and Find Full Text PDF

Sulfated glycosaminoglycans (GAGs) can direct cellular processes by interacting with proteins of the extracellular matrix (ECM). In this study we characterize the interaction profiles of chemically sulfated hyaluronan (HA) and chondroitin sulfate (CS) derivatives with bone morphogenetic protein-2 (BMP-2) and investigate their relevance for complex formation with the receptor BMPR-IA. These goals were addressed by surface plasmon resonance (SPR) and ELISA in combination with molecular modeling and dynamics simulation.

View Article and Find Full Text PDF

Primrose syndrome and 3q13.31 microdeletion syndrome are clinically related disorders characterized by tall stature, macrocephaly, intellectual disability, disturbed behavior and unusual facial features, with diabetes, deafness, progressive muscle wasting and ectopic calcifications specifically occurring in the former. We report that missense mutations in ZBTB20, residing within the 3q13.

View Article and Find Full Text PDF

Infrared temperature-dependent spectroscopy is a well-known tool to characterize folding/unfolding transitions in peptides and proteins, assuming that the higher the temperature, the higher the unfolded population. The infrared spectra at different temperatures of two β-hairpin peptides (gramicidin S analogues GS6 and GS10) are here reconstructed by means of molecular dynamics (MD) simulations and a theoretical-computational method based on the perturbed matrix method. The calculated temperature-dependent spectra result in good agreement with the experimental available spectra.

View Article and Find Full Text PDF

Syringomycin E (SRE) is a member of a family of lipodepsipeptides that characterize the secondary metabolism of the plant-associated bacteria Pseudomonas syringae pv. syringae. It displays phytotoxic, antifungal and haemolytic activities, due to the membrane interaction and ion channel formation.

View Article and Find Full Text PDF

Neuroglobin (Ngb) is a globular protein that reversibly binds small ligands at the six coordination position of the heme. With respect to other globins similar to myoglobin, Ngb displays some peculiarities as the topological reorganization of the internal cavities coupled to the sliding of the heme, or the binding of the endogenous distal histidine to the heme in the absence of an exogenous ligand. In this Article, by using multiple (independent) molecular dynamics trajectories (about 500 ns in total), the migration pathways of photolized carbon monoxide (CO) within solvated Ngb were analyzed, and a quantitative description of CO migration and corresponding kinetics was obtained.

View Article and Find Full Text PDF

By using multiple molecular dynamics (MD) trajectories, a quantitative description of carbon monoxide (CO) migration within crystal of L29F myoglobin mutant (L29F-Mb) was obtained. The aim was to provide a detailed model for ligand diffusion in the protein to be compared to the available L29F-Mb experimental-computational data and to the corresponding model kinetics we previously obtained for photolyzed CO within crystallized wild-type myoglobin (wt-Mb). Results suggest a clear migration pathway from distal pocket to the proximal site, similar to the one observed in wt-Mb, with a relaxation kinetics differing from the wt-Mb one essentially for the escape rate which is much higher in the mutant.

View Article and Find Full Text PDF

The effect of structural disorder on the X-ray absorption near-edge structure (XANES) spectrum of a heme protein has been investigated using the dynamical description of the system derived from molecular dynamics (MD) simulations. The XANES spectra of neuroglobin (Ngb) and carbonmonoxy-neuroglobin (NgbCO) have been quantitatively reproduced, starting from the MD geometrical configurations, without carrying out any optimization in the structural parameter space. These results provide an important experimental validation of the reliability of the potentials used in the MD simulations and accordingly corroborate the consistency of the structural dynamic information on the metal center, related to its biological function.

View Article and Find Full Text PDF

Oxidative stress is a widespread challenge for living organisms, and especially so for parasitic ones, given the fact that their hosts can produce reactive oxygen species (ROS) as a mechanism of defense. Thus, long lived parasites, such as the flatworm Schistosomes, have evolved refined enzymatic systems capable of detoxifying ROS. Among these, glutathione peroxidases (Gpx) are a family of sulfur or selenium-dependent isozymes sharing the ability to reduce peroxides using the reducing equivalents provided by glutathione or possibly small proteins such as thioredoxin.

View Article and Find Full Text PDF
Article Synopsis
  • Gramicidin S (GS) analogues are cyclic peptides with a unique double-stranded beta-sheet structure, useful for studying beta-hairpins and beta-structures.
  • This study focuses on the folding and unfolding behavior of the GS6 analogue using all-atoms molecular dynamics simulations at various temperatures.
  • The combination of molecular dynamics and statistical models helps in understanding the peptide's structural, thermodynamic, and kinetic properties during its folding/unfolding transitions.
View Article and Find Full Text PDF