Publications by authors named "Massana R"

Marine Stramenopiles (MAST) were first described two decades ago through ribosomal RNA gene (rRNA gene) sequences from marine surveys of microbial eukaryotes. MAST comprise several independent lineages at the base of the Stramenopiles. Despite their prevalence in the ocean, the majority of MAST diversity remains uncultured.

View Article and Find Full Text PDF

Background: The backbone of the eukaryotic tree of life contains taxa only found in molecular surveys, of which we still have a limited understanding. Such is the case of Picozoa, an enigmatic lineage of heterotrophic picoeukaryotes within the supergroup Archaeplastida, which has emerged as a significant component of marine microbial planktonic communities. To enhance our understanding of the diversity, distribution, and ecology of Picozoa, we conduct a comprehensive assessment at different levels, from assemblages to taxa, employing phylogenetic analysis, species distribution modeling, and ecological niche characterization.

View Article and Find Full Text PDF

Documenting large-scale patterns of animals in the ocean and determining the drivers of these patterns is needed for conservation efforts given the unprecedented rates of change occurring within marine ecosystems. We used existing datasets from two global expeditions, and , that circumnavigated the oceans and sampled down to 4000 m to assess metazoans from environmental DNA (eDNA) extracted from seawater. We describe patterns of taxonomic richness within metazoan phyla and orders based on metabarcoding and infer the relative abundance of phyla using metagenome datasets, and relate these data to environmental variables.

View Article and Find Full Text PDF

Marine microbial communities differ genetically, metabolically, and ecologically according to their lifestyle, and they may respond differently to environmental changes. In this study, we investigated the seasonal dynamics of bacterial assemblies in the free-living (FL) and particle-associated (PA) fractions across a span of 6 years in the Blanes Bay Microbial Observatory in the Northwestern Mediterranean. Both lifestyles showed marked seasonality.

View Article and Find Full Text PDF

A plant parasite associated with the white haze disease in apples, the Basidiomycota Gjaerumia minor, has been found in most samples of the global bathypelagic ocean. An analysis of environmental 18S rDNA sequences on 12 vertical profiles of the Malaspina 2010 expedition shows that the relative abundance of this cultured species increases with depth while its distribution is remarkably different between the deep waters of the Pacific and Atlantic oceans, being present in higher concentrations in the former. This is evident from sequence analysis and a microscopic survey with a species-specific newly designed TSA-FISH probe.

View Article and Find Full Text PDF

A bacterial endosymbiont of marine algae evolved to an organelle.

View Article and Find Full Text PDF

A persistent microbial seed bank is postulated to sustain the marine biosphere, and recent findings show that prokaryotic taxa present in the ocean's surface dominate prokaryotic communities throughout the water column. Yet, environmental conditions exert a tight control on the activity of prokaryotes, and drastic changes in these conditions are known to occur from the surface to deep waters. The simultaneous characterization of the total (DNA) and active (i.

View Article and Find Full Text PDF

The osmotrophic uptake of dissolved organic compounds in the ocean is considered to be dominated by heterotrophic prokaryotes, whereas the role of planktonic eukaryotes is still unclear. We explored the capacity of natural eukaryotic plankton communities to incorporate the synthetic amino acid L-homopropargylglycine (HPG, analogue of methionine) using biorthogonal noncanonical amino acid tagging (BONCAT), and we compared it with prokaryotic HPG use throughout a 9-day survey in the NW Mediterranean. BONCAT allows to fluorescently identify translationally active cells, but it has never been applied to natural eukaryotic communities.

View Article and Find Full Text PDF

The Ocean microbiome has a crucial role in Earth's biogeochemical cycles. During the last decade, global cruises such as Tara Oceans and the Malaspina Expedition have expanded our understanding of the diversity and genetic repertoire of marine microbes. Nevertheless, there are still knowledge gaps regarding their diversity patterns throughout depth gradients ranging from the surface to the deep ocean.

View Article and Find Full Text PDF

Microbial interactions are vital in maintaining ocean ecosystem function, yet their dynamic nature and complexity remain largely unexplored. Here, we use association networks to investigate possible ecological interactions in the marine microbiome among archaea, bacteria, and picoeukaryotes throughout different depths and geographical regions of the tropical and subtropical global ocean. Our findings reveal that potential microbial interactions change with depth and geographical scale, exhibiting highly heterogeneous distributions.

View Article and Find Full Text PDF
Article Synopsis
  • Paramuricea clavata is a key species in Mediterranean reefs but is facing threats from global warming and mass mortality events.
  • The study investigates how the microbiome of this coral influences its sensitivity to heat stress, finding that certain microorganisms correlate with thermal resistance and susceptibility.
  • The research suggests that increased heat stress may shift relationships between corals and their microbiome from beneficial to harmful, highlighting the need for further exploration to aid conservation strategies.
View Article and Find Full Text PDF

Perkinsea constitutes a lineage within the Alveolata eukaryotic superphylum, mainly composed of parasitic organisms. Some described species represent significant ecological and economic threats due to their invasive ability and pathogenicity, which can lead to mortality events. However, the genetic diversity of these described species is just the tip of the iceberg.

View Article and Find Full Text PDF

Tiny ocean plankton (picoplankton) are fundamental for the functioning of the biosphere, but the ecological mechanisms shaping their biogeography were partially understood. Comprehending whether these microorganisms are structured by niche versus neutral processes is relevant in the context of global change. We investigate the ecological processes (selection, dispersal, and drift) structuring global-ocean picoplanktonic communities inhabiting the epipelagic (0 to 200 meters), mesopelagic (200 to 1000 meters), and bathypelagic (1000 to 4000 meters) zones.

View Article and Find Full Text PDF

is a key member of open-ocean primary producer communities. Despite its importance, little is known about the predators that consume this cyanobacterium and make its biomass available to higher trophic levels. We identify potential predators along a gradient wherein abundance increased from near detection limits (coastal California) to >200,000 cells mL (subtropical North Pacific Gyre).

View Article and Find Full Text PDF

Background: Marine heterotrophic flagellates (HF) are dominant bacterivores in the ocean, where they represent the trophic link between bacteria and higher trophic levels and participate in the recycling of inorganic nutrients for regenerated primary production. Studying their activity and function in the ecosystem is challenging since most of the HFs in the ocean are still uncultured. In the present work, we investigated gene expression of natural HF communities during bacterivory in four unamended seawater incubations.

View Article and Find Full Text PDF

Background: Microbial interactions are fundamental for Earth's ecosystem functioning and biogeochemical cycling. Nevertheless, they are challenging to identify and remain barely known. Omics-based censuses are helpful in predicting microbial interactions through the statistical inference of single (static) association networks.

View Article and Find Full Text PDF

Environmental community sequencing is suitable for producing metagenome assembled genomes (MAGs) of prokaryotes, but there is the perception that it cannot work for eukaryotes. In this issue of , Delmont et al process a massive sequencing dataset from marine plankton to produce 683 eukaryotic MAGs; the study also includes useful functional information.

View Article and Find Full Text PDF

Phaeocystis is a globally widespread marine phytoplankton genus, best known for its colony-forming species that can form large blooms and odorous foam during bloom decline. In the North Sea, Phaeocystis globosa typically becomes abundant towards the end of the spring bloom, when nutrients are depleted and the share of mixotrophic protists increases. Although mixotrophy is widespread across the eukaryotic tree of life and is also found amongst haptophytes, a mixotrophic nutrition has not yet been demonstrated in Phaeocystis.

View Article and Find Full Text PDF

The successful colonization of new habitats has played a fundamental role during the evolution of life. Salinity is one of the strongest barriers for organisms to cross, which has resulted in the evolution of distinct marine and non-marine (including both freshwater and soil) communities. Although microbes represent by far the vast majority of eukaryote diversity, the role of the salt barrier in shaping the diversity across the eukaryotic tree is poorly known.

View Article and Find Full Text PDF

Background: Ocean microbes constitute ~ 70% of the marine biomass, are responsible for ~ 50% of the Earth's primary production and are crucial for global biogeochemical cycles. Marine microbiotas include core taxa that are usually key for ecosystem function. Despite their importance, core marine microbes are relatively unknown, which reflects the lack of consensus on how to identify them.

View Article and Find Full Text PDF
Article Synopsis
  • Remote deep-ocean sediment ecosystems are largely unexplored, and previous genomic studies struggled to differentiate between native benthic organisms and falling plankton.
  • This research utilized global eukaryotic DNA metabarcoding data from various ocean depths to highlight that deep-ocean sediment biodiversity is at least three times richer than that in pelagic (open ocean) environments, with many unknown species.
  • The study found that benthic communities vary by ocean basin and are influenced by organic carbon flux, while plankton DNA indicates which species contribute to carbon export at the seafloor, revealing important ecological roles in the carbon cycle.
View Article and Find Full Text PDF

Grazing controls bacterial abundances and composition in many ecosystems. In marine systems, heterotrophic flagellates (HFs) are important predators. Assemblages of HFs are primarily formed by species still uncultured; therefore, many aspects of their trophic behaviour are poorly known.

View Article and Find Full Text PDF

COVID-19 has led to global population lockdowns that have had indirect effects on terrestrial and marine fauna, yet little is known on their effects on marine planktonic communities. We analysed the effect of the spring 2020 lockdown in a marine coastal area in Blanes Bay, NW Mediterranean. We compared a set of 23 oceanographic, microbial and biogeochemical variables sampled right after the strict lockdown in Spain, with data from the previous 15 years after correcting for long-term trends.

View Article and Find Full Text PDF

East African Great Lakes are old and unique natural resources heavily utilized by their bordering countries. In those lakes, ecosystem functioning is dominated by pelagic processes, where microorganisms are key components; however, protistan diversity is barely known. We investigated the community composition of small eukaryotes (<10 µm) in surface waters of four African Lakes (Kivu, Edward, Albert and Victoria) by sequencing the 18S rRNA gene.

View Article and Find Full Text PDF

Unicellular eukaryotic predators play a crucial role in the functioning of the ocean ecosystem by recycling nutrients and energy that are channeled to upper trophic levels. Traditionally, these evolutionarily diverse organisms have been combined into a single functional group (heterotrophic flagellates), overlooking their organismal differences. Here, we investigated four evolutionarily related species belonging to one cosmopolitan group of uncultured marine picoeukaryotic predators: marine stramenopiles (MAST)-4 (species A, B, C, and E).

View Article and Find Full Text PDF