Publications by authors named "Massadi O"

Article Synopsis
  • - The study investigates the role of the Pyk2 gene in obesity among children and adolescents, noting its previously unclear involvement in energy balance-related diseases.
  • - Researchers measured mRNA expression levels of Pyk2 in 130 Caucasian subjects, split into two groups based on Body Mass Index (BMI), and found higher expression levels in those with obesity.
  • - The results revealed a positive correlation between Pyk2 expression levels and various obesity-related metrics (like weight, fat mass, and blood pressure), suggesting that Pyk2 may be a potential predictor for developing obesity.
View Article and Find Full Text PDF
Article Synopsis
  • Pyk2 is involved in various psychological disorders, including stress, Huntington's, and Alzheimer's, which are linked to social impairments and mitochondrial dysfunction.
  • Research shows that reducing Pyk2 in mouse hippocampal neurons leads to decreased social dominance and aggression, while Pyk2 levels increase in cells from schizophrenic individuals.
  • The study suggests that Pyk2 may regulate social behaviors through its impact on mitochondrial dynamics, potentially connecting Pyk2 levels to social difficulties seen in schizophrenia.
View Article and Find Full Text PDF

Leptin is a hormone that is secreted by adipocytes in proportion to adipose tissue size, and that informs the brain about the energy status of the body. Leptin acts through its receptor LepRb, expressed mainly in the hypothalamus, and induces a negative energy balance by potent inhibition of feeding and activation of energy expenditure. These actions have led to huge expectations for the development of therapeutic targets for metabolic complications based on leptin-derived compounds.

View Article and Find Full Text PDF

Aim: Growth differentiation factor 15 (GDF15) is a stress response cytokine that has been proposed as a relevant metabolic hormone. Descriptive studies have shown that plasma GDF15 levels are regulated by short term changes in nutritional status, such as fasting, or in obesity. However, few data exist regarding how GDF15 levels are regulated in peripheral tissues.

View Article and Find Full Text PDF

Fibroblast growth factor 21 is a pleiotropic hormone secreted mainly by the liver in response to metabolic and nutritional challenges. Physiologically, fibroblast growth factor 21 plays a key role in mediating the metabolic responses to fasting or starvation and acts as an important regulator of energy homeostasis, glucose and lipid metabolism, and insulin sensitivity, in part by its direct action on the central nervous system. Accordingly, pharmacological recombinant fibroblast growth factor 21 therapies have been shown to counteract obesity and its related metabolic disorders in both rodents and nonhuman primates.

View Article and Find Full Text PDF

Early-life determinants are thought to be a major factor in the rapid increase of obesity. However, while maternal nutrition has been extensively studied, the effects of breastfeeding by the infant on the reprogramming of energy balance in childhood and throughout adulthood remain largely unknown. Here we show that delayed weaning in rat pups protects them against diet-induced obesity in adulthood, through enhanced brown adipose tissue thermogenesis and energy expenditure.

View Article and Find Full Text PDF

The growth hormone/insulin growth factor-1 axis is a key endocrine system that exerts profound effects on metabolism by its actions on different peripheral tissues but also in the brain. Growth hormone together with insulin growth factor-1 perform metabolic adjustments, including regulation of food intake, energy expenditure, and glycemia. The dysregulation of this hepatic axis leads to different metabolic disorders including obesity, type 2 diabetes or liver disease.

View Article and Find Full Text PDF

Weight gain is a hallmark of decreased estradiol (E2) levels because of menopause or following surgical ovariectomy (OVX) at younger ages. Of note, this weight gain tends to be around the abdomen, which is frequently associated with impaired metabolic homeostasis and greater cardiovascular risk in both rodents and humans. However, the molecular underpinnings and the neuronal basis for these effects remain to be elucidated.

View Article and Find Full Text PDF

Melanin-concentrating hormone (MCH) is a 19aa cyclic peptide exclusively expressed in the lateral hypothalamic area, which is an area of the brain involved in a large number of physiological functions and vital processes such as nutrient sensing, food intake, sleep-wake arousal, memory formation, and reproduction. However, the role of the lateral hypothalamic area in metabolic regulation stands out as the most relevant function. MCH regulates energy balance and glucose homeostasis by controlling food intake and peripheral lipid metabolism, energy expenditure, locomotor activity and brown adipose tissue thermogenesis.

View Article and Find Full Text PDF

Melanin-concentrating hormone (MCH) is a small cyclic peptide expressed in all mammals, mainly in the hypothalamus. MCH acts as a robust integrator of several physiological functions and has crucial roles in the regulation of sleep-wake rhythms, feeding behaviour and metabolism. MCH signalling has a very broad endocrine context and is involved in physiological functions and emotional states associated with metabolism, such as reproduction, anxiety, depression, sleep and circadian rhythms.

View Article and Find Full Text PDF

Pyk2 is a Ca-activated non-receptor tyrosine kinase enriched in the forebrain, especially in pyramidal neurons of the hippocampus. Previous reports suggested its role in hippocampal synaptic plasticity and spatial memory but with contradictory findings possibly due to experimental conditions. Here we address this issue and show that novel object location, a simple test of spatial memory induced by a single training session, is altered in Pyk2 KO mice and that re-expression of Pyk2 in the dorsal hippocampus corrects this deficit.

View Article and Find Full Text PDF

Sirtuin 3 (SIRT3) is one of the seven mammalian sirtuin homologs of the yeast Sir2 gene that has emerged as an important player in the regulation of energy metabolism in peripheral tissues. However, its role in the hypothalamus has not been explored. Herein, we show that the genetic inhibition of SIRT3 in the hypothalamic arcuate nucleus (ARC) induced a negative energy balance and improvement of several metabolic parameters.

View Article and Find Full Text PDF

Sirtuins are NAD+ dependent deacetylases that regulate a large number of physiological processes. These enzymes are highly conserved and act as energy sensors to coordinate different metabolic responses in a controlled manner. At present, seven mammalian sirtuins (SIRT 1-7) have been identified, with SIRT1 and SIRT6 shown to exert their metabolic actions in the hypothalamus, both with crucial roles in eliciting responses to dampen metabolic complications associated with obesity.

View Article and Find Full Text PDF

Skeletal muscle promotes metabolic balance by regulating glucose uptake and the stimulation of multiple interorgan crosstalk. We show here that the catalytic activity of Vav2, a Rho GTPase activator, modulates the signaling output of the IGF1- and insulin-stimulated phosphatidylinositol 3-kinase pathway in that tissue. Consistent with this, mice bearing a Vav2 protein with decreased catalytic activity exhibit reduced muscle mass, lack of proper insulin responsiveness and, at much later times, a metabolic syndrome-like condition.

View Article and Find Full Text PDF

Linaclotide is a synthetic peptide approved by the FDA for the treatment of constipation-predominant irritable bowel syndrome and chronic constipation. Linaclotide binds and activates the transmembrane receptor guanylate cyclase 2C (Gucy2c). Uroguanylin (UGN) is a 16 amino acid peptide that is mainly secreted by enterochromaffin cells in the duodenum and proximal small intestine.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are two of the most common liver diseases associated with obesity, type 2 diabetes and metabolic syndrome. The prevalence of these conditions are increasingly rising and presently there is not a pharmacological option available in the market. Elucidation of the mechanism of action and the molecular underpinnings behind liver disease could help to better understand the pathophysiology of these illnesses.

View Article and Find Full Text PDF

Melanin-concentrating hormone (MCH) is an important regulator of food intake, glucose metabolism, and adiposity. However, the mechanisms mediating these actions remain largely unknown. We used pharmacological and genetic approaches to show that the sirtuin 1 (SIRT1)/FoxO1 signaling pathway in the hypothalamic arcuate nucleus (ARC) mediates MCH-induced feeding, adiposity, and glucose intolerance.

View Article and Find Full Text PDF

Glucagon exerts pleiotropic actions on energy balance and has emerged as an attractive target for the treatment of diabetes and obesity in the last few years. Glucagon reduces body weight and adiposity by suppression of appetite and by modulation of lipid metabolism. Moreover, this hormone promotes weight loss by activation of energy expenditure and thermogenesis.

View Article and Find Full Text PDF

Cancer cells feature strong metabolic changes to cope with the high energy demand for cell growth and division. Given the importance of metabolic reprogramming in tumor development, it seems logical that tumor suppressors and oncogenes are also regulating the molecular pathways controlling these processes. The p53 tumor suppressor gene has been extensively studied for its role in responding to DNA damage, hypoxia, and oncogenic activation.

View Article and Find Full Text PDF

Current pharmacological therapies that target single receptors have limited efficacy for the treatment of diabetes and obesity. Novel approaches with hybrid peptides that activate more than one receptor at once to generate beneficial effects through synergistic effects have shown promising results. Several unimolecular dual and tri-agonists, mainly associated with GPCR like GLP-1/GCG/GIP receptors, have shown exceptional efficacy in preclinical models, and are currently being evaluated in clinical trials to investigate their safety and beneficial effects in humans.

View Article and Find Full Text PDF

Multiple crosstalk between peripheral organs and the nervous system are required to maintain physiological and metabolic homeostasis. Using Vav3-deficient mice as a model for chronic sympathoexcitation-associated disorders, we report here that afferent fibers of the hepatic branch of the vagus nerve are needed for the development of the peripheral sympathoexcitation, tachycardia, tachypnea, insulin resistance, liver steatosis and adipose tissue thermogenesis present in those mice. This neuronal pathway contributes to proper activity of the rostral ventrolateral medulla, a sympathoregulatory brainstem center hyperactive in Vav3-/- mice.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is a common disorder with a variety of symptoms including mood alterations, anhedonia, sleep and appetite disorders, and cognitive disturbances. Stressful life events are among the strongest risk factors for developing MDD. At the cellular level, chronic stress results in the modification of dendritic spine morphology and density.

View Article and Find Full Text PDF

Food intake is tightly regulated by homeostatic and reward mechanisms and the adequate function of both is necessary for the proper maintenance of energy balance. Ghrelin impacts on these two levels to induce feeding. In this review, we present the actions of ghrelin in food reward, including their dependence on other relevant modulators implicated in the motivational aspects of feeding, including dopamine, opioid peptides, and endocannabinoids.

View Article and Find Full Text PDF

p53 is a well-known tumor suppressor that has emerged as an important player in energy balance. However, its metabolic role in the hypothalamus remains unknown. Herein, we show that mice lacking p53 in agouti-related peptide (AgRP), but not proopiomelanocortin (POMC) or steroidogenic factor-1 (SF1) neurons, are more prone to develop diet-induced obesity and show reduced brown adipose tissue (BAT) thermogenic activity.

View Article and Find Full Text PDF