This study compares the performance of artificial neural networks (ANN) trained by grey wolf optimization (GWO), biogeography-based optimization (BBO), and Levenberg-Marquardt (LM) to estimate the weight on bit (WOB). To this end, a dataset consisting of drilling depth, drill string rotational speed, rate of penetration, and volumetric flow rate as input variables and the WOB as a response is used to develop and validate the intelligent tools. The relevance test is applied to sort the strength of WOB dependency on the considered features.
View Article and Find Full Text PDF