Background: Excessive daytime sleepiness (EDS) is a cause of low quality of life among obstructive sleep apnoea (OSA) patients. Current methods of assessing and predicting EDS are limited due to time constraints or differences in subjective experience and scoring. Electroencephalogram (EEG) power spectral densities (PSDs) have shown differences between OSA and non-OSA patients, and fatigued and non-fatigued patients.
View Article and Find Full Text PDFObjective: The current electroencephalography (EEG) measurement setup is complex, laborious to set up, and uncomfortable for patients. We hypothesize that differences in EEG signal characteristics for sleep staging between the left and right hemispheres are negligible; therefore, there is potential to simplify the current measurement setup. We aimed to investigate the technical hemispheric differences in EEG signal characteristics along with electrooculography (EOG) signals during different sleep stages.
View Article and Find Full Text PDFThe high number of fatal crashes caused by driver drowsiness highlights the need for developing reliable drowsiness detection methods. An ideal driver drowsiness detection system should estimate multiple levels of drowsiness accurately without intervening in the driving task. This paper proposes a multi-level drowsiness detection system by a deep neural network-based classification system using a combination of electrocardiogram and respiration signals.
View Article and Find Full Text PDFProc Inst Mech Eng H
January 2022
Driver drowsiness causes fatal driving accidents. Thermal imaging is a suitable drowsiness detection method as it is non-invasive and robust against changes in the ambient light. In this paper, driver drowsiness is detected by measuring the forehead temperature at the region covering the supratrochlear artery and also the cheek temperature.
View Article and Find Full Text PDF