Publications by authors named "Masoud Nazarian-Samani"

Ternary transition-metal tin chalcogenides, with their diverse compositions, abundant constituents, high theoretical capacities, acceptable working potentials, excellent conductivities, and synergistic active/inactive multi-components, hold promise as anode materials for metal-ion batteries. However, abnormal aggregation of Sn nanocrystals and the shuttling of intermediate polysulfides during electrochemical tests detrimentally affect the reversibility of redox reactions and lead to rapid capacity fading within a limited number of cycles. In this study, we present the development of a robust Janus-type metallic NiSnS-carbon nanotube (NSSC) heterostructured anode for Li-ion batteries (LIBs).

View Article and Find Full Text PDF

Ion and electron transportation determine the electrochemical performance of anodes in metal-ion batteries. This study demonstrates the advantage of charge transfer over mass transport in ensuring ultrastable electrochemical performance. Additionally, charge transfer governs the quality, composition, and morphology of a solid-electrolyte interphase (SEI) film.

View Article and Find Full Text PDF

Recently, K-ion batteries (KIBs) have attracted attention for potential applications in next-generation energy storage devices principally on the account of their abundancy and lower cost. Herein, for the first time, we report an anatase TiO-derived Magnéli phase TiO as a novel anode material for KIBs. We incorporate pristine carbon nanotube (CNT) on the TiO host materials due to the low electronic conductivity of the host materials.

View Article and Find Full Text PDF

In this study, we synthesize two layered and amorphous structures of germanium phosphide (GeP) and compare their electrochemical performances to better understand the role of layered, crystalline structures and their ability to control large volume expansions. We compare the results obtained with those of previous, conventional viewpoints addressing the effectiveness of amorphous phases in traditional anodes (Si, Ge, and Sn) to hinder electrode pulverization. By means of both comprehensive experimental characterizations and density functional theory calculations, we demonstrate that layered, crystalline GeP in a hybrid structure with multiwalled carbon nanotubes exhibits exceptionally good transport of electrons and electrolyte ions and tolerance to extensive volume changes and provides abundant reaction sites relative to an amorphous structure, resulting in a superior solid-electrolyte interphase layer and unprecedented initial Coulombic efficiencies in both Li-ion and Na-ion batteries.

View Article and Find Full Text PDF