Polar van der Waals (vdW) crystals, composed of atomic layers held together by vdW forces, can host phonon polaritons-quasiparticles arising from the interaction between photons in free-space light and lattice vibrations in polar materials. These crystals offer advantages such as easy fabrication, low Ohmic loss, and optical confinement. Recently, hexagonal boron nitride (hBN), known for having hyperbolicity in the mid-infrared range, has been used to explore multiple modes with high optical confinement.
View Article and Find Full Text PDFThe interest in the wafer-scale growth of two-dimensional (2D) materials, including transition metal dichalcogenides (TMDCs), has been rising for transitioning from lab-scale devices to commercial-scale systems. Among various synthesis techniques, physical vapor deposition, such as pulsed laser deposition (PLD), has shown promise for the wafer-scale growth of 2D materials. However, due to the high volatility of chalcogen atoms (e.
View Article and Find Full Text PDFUnderstanding and controlling the growth evolution of atomically thin monolayer two-dimensional (2D) materials such as transition metal dichalcogenides (TMDCs) are vital for next-generation 2D electronics and optoelectronic devices. However, their growth kinetics are not fully observed or well understood due to the bottlenecks associated with the existing synthesis methods. This study demonstrates the time-resolved and ultrafast growth of 2D materials by a laser-based synthesis approach that enables the rapid initiation and termination of the vaporization process during crystal growth.
View Article and Find Full Text PDFTitanium is widely used in medical devices, such as dental and orthopedic implants, due to its excellent mechanical properties, low toxicity, and biocompatibility. However, the titanium surface has the risk of microbial biofilm formation, which results in infections from species such as (). This kind of biofilm prevents antifungal therapy and complicates the treatment of infectious diseases associated with implanted devices.
View Article and Find Full Text PDFThis work presents a novel, to the best of our knowledge, cross correlation technique for determining the laser heating-induced Raman shift laser power coefficient ψ required for energy transport state-resolved Raman (ET-Raman) methods. The cross correlation method determines the measure of similarity between the experimental intensity data and a varying test Gaussian signal. By circumventing the errors inherent in any curve fittings, the cross correlation method quickly and accurately determines the location where the test Gaussian signal peak is most like the Raman peak, thereby revealing the peak location and ultimately the value of ψ.
View Article and Find Full Text PDFStrain-engineering in 2D transition metal dichalcogenide (TMD) semiconductors has garnered intense research interest in tailoring the optical properties via strain-induced modifications of the electronic bands in TMDs, while its impact on the exciton dynamics remains less understood. To address this, an extensive study of transient optical absorption (TA) of both W- and Mo-based single-crystalline monolayer TMDs grown by a recently developed laser-assisted evaporation method is performed. All spectral features of the monolayers as grown on fused silica substrates exhibit appreciable redshifts relating to the existence of strain due to growth conditions.
View Article and Find Full Text PDFThe emergence of rapidly expanding infectious diseases such as coronavirus (COVID-19) demands effective biosensors that can promptly detect and recognize the pathogens. Field-effect transistors based on semiconducting two-dimensional (2D) materials (2D-FETs) have been identified as potential candidates for rapid and label-free sensing applications. This is because any perturbation of such atomically thin 2D channels can significantly impact their electronic transport properties.
View Article and Find Full Text PDFTwo-dimensional transition metal dichalcogenides (2D-TMDs) hold a great potential to platform future flexible optoelectronics. The beating hearts of these materials are their excitons known as X and X, which arise from transitions between spin-orbit split (SOS) levels in the conduction and valence bands at the K-point. The functionality of 2D-TMD-based devices is determined by the dynamics of these excitons.
View Article and Find Full Text PDFThis work reports the interfacial thermal conductance () and radiative recombination efficiency (β), also known as photoluminescence quantum yield (PL QY), of monolayer WSe flakes supported by fused silica substrates via energy-transport state-resolved Raman (ET-Raman). This is the first known work to consider the effect of radiative electron-hole recombination on the thermal transport characteristics of single-layer transition-metal dichalcogenides (TMDs). ET-Raman uses a continuous-wave laser for steady-state heating as well as nanosecond and picosecond lasers for transient energy transport to simultaneously heat the monolayer flakes and extract the Raman signal.
View Article and Find Full Text PDFDirect synthesis, large-scale integration, and patterning of two-dimensional (2D) quantum materials (e.g. MoS, WSe) on flexible and transparent substrates are of high interest for flexible and conformal device applications.
View Article and Find Full Text PDFExcitons in two-dimensional transition metal dichalcogenide monolayers (2D-TMDs) are of essential importance due to their key involvement in 2D-TMD-based applications. For instance, exciton dissociation and exciton radiative recombination are indispensible processes in photovoltaic and light-emitting devices, respectively. These two processes depend drastically on the photogeneration efficiency and lifetime of excitons.
View Article and Find Full Text PDFTitanium has been the material of interest in biological implant applications due to its unique mechanical properties and biocompatibility. Their design is now growing rapidly due to the advent of additive manufacturing technology that enables the fabrication of complex and patient-customized parts. Titanium dioxides (TiO) coatings with different phases (e.
View Article and Find Full Text PDFInterest in layered two-dimensional (2D) materials has been escalating rapidly over the past few decades due to their promising optoelectronic and photonic properties emerging from their atomically thin 2D structural confinements. When these 2D materials are further confined in lateral dimensions toward zero-dimensional (0D) structures, 2D nanoparticles and quantum dots with new properties can be formed. Here, we report a nonequilibrium gas-phase synthesis method for the stoichiometric formation of gallium selenide (GaSe) nanoparticles ensembles that can potentially serve as quantum dots.
View Article and Find Full Text PDFTwo-dimensional (2D) crystal growth over substrate features is fundamentally guided by the Gauss-Bonnet theorem, which mandates that rigid, planar crystals cannot conform to surfaces with nonzero Gaussian curvature. Here, we reveal how topographic curvature of lithographically designed substrate features govern the strain and growth dynamics of triangular WS monolayer single crystals. Single crystals grow conformally without strain over deep trenches and other features with zero Gaussian curvature; however, features with nonzero Gaussian curvature can easily impart sufficient strain to initiate grain boundaries and fractured growth in different directions.
View Article and Find Full Text PDFIn-plane heterojuctions formed from two monolayer semiconductors represent the finest control of electrons in condensed matter and have attracted significant interest. Various device studies have shown the effectiveness of such structures to control electronic processes, illustrating their potentials for electronic and optoelectronic applications. However, information about the physical mechanisms of charge carrier transfer across the junctions is still rare, mainly due to the lack of adequate experimental techniques.
View Article and Find Full Text PDFNonequilibrium growth pathways for crystalline nanostructures with metastable phases are demonstrated through the gas-phase formation, attachment, and crystallization of ultrasmall amorphous nanoparticles as building blocks in pulsed laser deposition (PLD). Temporally and spatially resolved gated-intensified charge couple device (ICCD) imaging and ion probe measurements are employed as in situ diagnostics to understand and control the plume expansion conditions for the synthesis of nearly pure fluxes of ultrasmall (∼3 nm) amorphous TiO nanoparticles in background gases and their selective delivery to substrates. These amorphous nanoparticles assemble into loose, mesoporous assemblies on substrates at room temperature but dynamically crystallize by sequential particle attachment at higher substrate temperatures to grow nanostructures with different phases and morphologies.
View Article and Find Full Text PDFWe use amorphous titania nanoparticle networks produced by pulsed laser vaporization at room temperature as a model system for understanding the mechanism of formation of black titania. Here, we characterize the transformation of amorphous nanoparticles by annealing in pure Ar at 400 °C, the lowest temperature at which black titania was observed. Atomic resolution electron microscopy methods and electron energy loss spectroscopy show that the onset of crystallization occurs by nucleation of an anatase core that is surrounded by an amorphous TiO shell.
View Article and Find Full Text PDFPhotoinduced interfacial charge transfer is at the heart of many applications, including photovoltaics, photocatalysis, and photodetection. With the emergence of a new class of semiconductors, i.e.
View Article and Find Full Text PDFDevelopment of devices and structures based on the layered 2D materials critically hinges on the capability to induce, control, and tailor the electronic, transport, and optoelectronic properties via defect engineering, much like doping strategies have enabled semiconductor electronics and forging enabled introduction the of iron age. Here, we demonstrate the use of a scanning helium ion microscope (HIM) for tailoring the functionality of single layer MoSe2 locally, and decipher associated mechanisms at the atomic level. We demonstrate He(+) beam bombardment that locally creates vacancies, shifts the Fermi energy landscape and increases the Young's modulus of elasticity.
View Article and Find Full Text PDFCarbon nanotube yarn microelectrodes (CNTYMEs) exhibit rapid and selective detection of dopamine with fast-scan cyclic voltammetry (FSCV); however, the sensitivity limits their application . In this study, we introduce laser treatment as a simple, reliable, and efficient approach to improve the sensitivity of CNTYMEs by three fold while maintaining high temporal resolution. The effect of laser treatment on the microelectrode surface was characterized by scanning electron microscopy, Raman spectroscopy, energy dispersion spectroscopy, and laser confocal microscopy.
View Article and Find Full Text PDFDefect engineering has been a critical step in controlling the transport characteristics of electronic devices, and the ability to create, tune, and annihilate defects is essential to enable the range of next-generation devices. Whereas defect formation has been well-demonstrated in three-dimensional semiconductors, similar exploration of the heterogeneity in atomically thin two-dimensional semiconductors and the link between their atomic structures, defects, and properties has not yet been extensively studied. Here, we demonstrate the growth of MoSe2-x single crystals with selenium (Se) vacancies far beyond intrinsic levels, up to ∼20%, that exhibit a remarkable transition in electrical transport properties from n- to p-type character with increasing Se vacancy concentration.
View Article and Find Full Text PDFvan der Waals (vdW) heterostructures are promising building blocks for future ultrathin electronics. Fabricating vdW heterostructures by stamping monolayers at arbitrary angles provides an additional range of flexibility to tailor the resulting properties than could be expected by direct growth. Here, we report fabrication and comprehensive characterizations of WSe2/WS2 bilayer heterojunctions with various twist angles that were synthesized by artificially stacking monolayers of WS2 and WSe2 grown by chemical vapor deposition.
View Article and Find Full Text PDFA promising way to advance perovskite solar cells is to improve the quality of the electron transport material -e.g., titanium dioxide (TiO) - in a direction that increases electron transport and extraction.
View Article and Find Full Text PDFThe remarkable properties of black TiO2 are due to its disordered surface shell surrounding a crystalline core. However, the chemical composition and the atomic and electronic structure of the disordered shell and its relationship to the core remain poorly understood. Using advanced transmission electron microscopy methods, we show that the outermost layer of black TiO2 nanoparticles consists of a disordered Ti2O3 shell.
View Article and Find Full Text PDF