Publications by authors named "Masoud Ghamari-Langroudi"

Hereditary defects in the function of the Kir7.1 in the retinal pigment epithelium are associated with the ocular diseases retinitis pigmentosa, Leber congenital amaurosis, and snowflake vitreal degeneration. Studies also suggest that Kir7.

View Article and Find Full Text PDF

The muscarinic acetylcholine receptor (mAChR) subtype 5 (M) represents a novel potential target for the treatment of multiple addictive disorders, including opioid use disorder. Through chemical optimization of several functional high-throughput screening hits, () was identified as a novel M orthosteric antagonist with high potency (human M IC = 36 nM), M subtype selectivity (>100-fold selectivity against human M) and favorable physicochemical properties for systemic dosing in preclinical addiction models. In acute brain slice electrophysiology studies, blocked the nonselective muscarinic agonist oxotremorine-M-induced increases in neuronal firing rates of midbrain dopamine neurons in the ventral tegmental area, a part of the mesolimbic dopaminergic reward circuitry.

View Article and Find Full Text PDF

The ascending prevalence of obesity in recent decades is commonly associated with soaring morbidity and mortality rates, resulting in increased health-care costs and decreased quality of life. A systemic state of stress characterized by low-grade inflammation and pathological formation of reactive oxygen species (ROS) usually manifests in obesity. The transcription factor nuclear factor erythroid-derived 2-like 2 (NRF2) is the master regulator of the redox homeostasis and plays a critical role in the resolution of inflammation.

View Article and Find Full Text PDF

The adipose tissue-derived hormone leptin can drive decreases in food intake while increasing energy expenditure. In diet-induced obesity, circulating leptin levels rise proportionally to adiposity. Despite this hyperleptinemia, rodents and humans with obesity maintain increased adiposity and are resistant to leptin's actions.

View Article and Find Full Text PDF

Hypothalamic regulation of feeding and energy expenditure is a fundamental and evolutionarily conserved neurophysiological process critical for survival. Dysregulation of these processes, due to environmental or genetic causes, can lead to a variety of pathological conditions ranging from obesity to anorexia. Melanocortins and endogenous cannabinoids (eCBs) have been implicated in the regulation of feeding and energy homeostasis; however, the interaction between these signaling systems is poorly understood.

View Article and Find Full Text PDF

Ablation of hypothalamic AgRP (Agouti-related protein) neurons is known to lead to fatal anorexia, whereas their activation stimulates voracious feeding and suppresses other motivational states including fear and anxiety. Despite the critical role of AgRP neurons in bidirectionally controlling feeding, there are currently no therapeutics available specifically targeting this circuitry. The melanocortin-3 receptor (MC3R) is expressed in multiple brain regions and exhibits sexual dimorphism of expression in some of those regions in both mice and humans.

View Article and Find Full Text PDF

Leptin signals to regulate food intake and energy expenditure under conditions of normative energy homeostasis. The central expression and function of leptin receptor B (LepRb) have been extensively studied during the past two decades; however, the mechanisms by which LepRb signaling dysregulation contributes to the pathophysiology of obesity remains unclear. The paraventricular nucleus of the hypothalamus (PVN) plays a crucial role in regulating energy balance as well as the neuroendocrine axes.

View Article and Find Full Text PDF

Energy stores in fat tissue are determined in part by the activity of hypothalamic neurones expressing the melanocortin-4 receptor (MC4R). Even a partial reduction in MC4R expression levels in mice, rats or humans produces hyperphagia and morbid obesity. Thus, it is of great interest to understand the molecular basis of neuromodulation by the MC4R.

View Article and Find Full Text PDF

Like most homeostatic systems, adiposity in mammals is defended between upper and lower boundary conditions. While leptin and melanocortin-4 receptor (MC4R) signaling are required for defending energy set point, mechanisms controlling upper and lower homeostatic boundaries are less well understood. In contrast to the MC4R, deletion of the MC3R does not produce measurable hyperphagia or hypometabolism under normal conditions.

View Article and Find Full Text PDF

The family of inward rectifying potassium channels (Kir channels) plays crucial roles in the regulation of heart rhythms, renal excretion, insulin release, and neuronal activity. Their dysfunction has been attributed to numerous diseases such as cardiac arrhythmia, kidney failure and electrolyte imbalance, diabetes mellitus, epilepsy, retinal degeneration, and other neuronal disorders. We have recently demonstrated that the melanocortin-4 receptor (MC4R), a Gα-coupled GPCR, regulates Kir7.

View Article and Find Full Text PDF

The serotonin 2C receptor regulates food uptake, and its activity is regulated by alternative pre-mRNA splicing. Alternative exon skipping is predicted to generate a truncated receptor protein isoform, whose existence was confirmed with a new antiserum. The truncated receptor sequesters the full-length receptor in intracellular membranes.

View Article and Find Full Text PDF

The melanocortin peptides derived from pro-opiomelanocortin (POMC) were originally understood in terms of the biological actions of α-melanocyte-stimulating hormone (α-MSH) on pigmentation and adrenocorticotrophic hormone on adrenocortical glucocorticoid production. However, the discovery of POMC mRNA and melanocortin peptides in the CNS generated activities directed at understanding the direct biological actions of melanocortins in the brain. Ultimately, discovery of unique melanocortin receptors expressed in the CNS, the melanocortin-3 (MC3R) and melanocortin-4 (MC4R) receptors, led to the development of pharmacological tools and genetic models leading to the demonstration that the central melanocortin system plays a critical role in the regulation of energy homeostasis.

View Article and Find Full Text PDF

The regulated release of anorexigenic α-melanocyte stimulating hormone (α-MSH) and orexigenic Agouti-related protein (AgRP) from discrete hypothalamic arcuate neurons onto common target sites in the central nervous system has a fundamental role in the regulation of energy homeostasis. Both peptides bind with high affinity to the melanocortin-4 receptor (MC4R); existing data show that α-MSH is an agonist that couples the receptor to the Gαs signalling pathway, while AgRP binds competitively to block α-MSH binding and blocks the constitutive activity mediated by the ligand-mimetic amino-terminal domain of the receptor. Here we show that, in mice, regulation of firing activity of neurons from the paraventricular nucleus of the hypothalamus (PVN) by α-MSH and AgRP can be mediated independently of Gαs signalling by ligand-induced coupling of MC4R to closure of inwardly rectifying potassium channel, Kir7.

View Article and Find Full Text PDF

Since the discovery of leptin and the central melanocortin circuit, electrophysiological studies have played a major role in elucidating mechanisms underlying energy homeostasis. This review highlights the contribution of findings made by electrophysiological measurements to the current understanding of hypothalamic neuronal networks involved in energy homeostasis with a specific focus on the arcuate-paraventricular nucleus circuit.

View Article and Find Full Text PDF

The hypothalamic arcuate nucleus is a complex structure containing both orexigenic and anorexigenic neurons, coordinately regulated by leptin and energy state. In their recent Nature Neuroscience study, Aponte et al. (2011) use optogenetic technology to provide a glimpse into the consequences of exclusive activation of either NPY/AgRP or POMC neurons.

View Article and Find Full Text PDF

Melanocortin-4 receptor (MC4R) is critical for energy homeostasis, and the paraventricular nucleus of the hypothalamus (PVN) is a key site of MC4R action. Most studies suggest that leptin regulates PVN neurons indirectly, by binding to receptors in the arcuate nucleus or ventromedial hypothalamus and regulating release of products like α-melanocyte-stimulating hormone (α-MSH), neuropeptide Y (NPY), glutamate, and GABA from first-order neurons onto the MC4R PVN cells. Here, we investigate mechanisms underlying regulation of activity of these neurons under various metabolic states by using hypothalamic slices from a transgenic MC4R-GFP mouse to record directly from MC4R neurons.

View Article and Find Full Text PDF

Fasting-induced suppression of thyroid hormone levels is an adaptive response to reduce energy expenditure in both humans and mice. This suppression is mediated by the hypothalamic-pituitary-thyroid axis through a reduction in TRH levels expressed in neurons of the paraventricular nucleus of the hypothalamus (PVN). TRH gene expression is positively regulated by leptin.

View Article and Find Full Text PDF

Neuropeptide W (NPW) is an anorectic peptide produced in the brain. Here, we showed that NPW was present in several hypothalamic nuclei, including the paraventricular hypothalamic nucleus, ventromedial hypothalamic nucleus, lateral hypothalamus, and hypothalamic arcuate nucleus. NPW expression was significantly up-regulated in leptin-deficient ob/ob and leptin receptor-deficient db/db mice.

View Article and Find Full Text PDF

Intracerebroventricular administration of gut peptide PYY3-36 stimulates food intake. In contrast, peripheral administration inhibits food intake, suggesting that the peptide has the opposite effect by virtue of accessing a unique subset of brain sites. A previous study suggested that peripheral PYY3-36 activates anorexigenic POMC neurons in the arcuate nucleus, and this was proposed to be the mechanism underlying the peptide's anorexigenic activity.

View Article and Find Full Text PDF

A slow posttrain afterhyperpolarization (sAHP) was studied in rat magnocellular neurosecretory cells (MNCs) in vitro. The sAHP was isolated from other afterpotentials by blocking the depolarizing afterpotential (DAP) with Cs(+) and the medium afterhyperpolarization (mAHP) with apamin. The sAHP amplitude increased logarithmically with activity ( approximately 3 mV per e-fold increase in number of impulses) and, when firing stopped, decayed exponentially with a time constant of 2 sec.

View Article and Find Full Text PDF

Depolarizing afterpotentials (DAPs) that follow action potentials in magnocellular neurosecretory cells (MNCs) are thought to underlie the generation of phasic firing, a pattern that optimizes vasopressin release from the neurohypophysis. Previous work has suggested that the DAP may result from the Ca(2+)-dependent reduction of a resting K(+) conductance. Here we examined the effects of flufenamic acid (FFA), a blocker of Ca(2+)-dependent non-selective cation (CAN) channels, on DAPs and phasic firing using intracellular recordings from supraoptic MNCs in superfused explants of rat hypothalamus.

View Article and Find Full Text PDF