We employed a convenient evaporation approach to fabricate photonic crystals by naturally drying droplets laden with nanoparticles on a superhydrophobic surface. The final drying morphology could be controlled by the concentration of nanoparticles. A dilute droplet resulted in a torus, whereas a quasi-spherical cap with a bottom cavity was made from a concentrated droplet.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2019
Surfactants, as amphiphilic molecules, adsorb easily at interfaces and can detrimentally destroy the useful, gas-trapping wetting state (Cassie-Baxter, CB) of a drop on superhydrophobic surfaces. Here, we provide a quantitative understanding of how surfactants alter the wetting state and contact angle of aqueous drops on hydrophobic microstructures of different roughness () and solid fraction (ϕ). Experimentally, at low surfactant concentrations (), some drops attain a homogeneous wetting state (Wenzel, W), while others attain the CB state whose large contact angles can be predicted by a thermodynamic model.
View Article and Find Full Text PDFWater-repellent, rough surfaces have a remarkable and beneficial wetting property: when a water droplet comes in contact with a small fraction of the solid, both liquid-solid adhesion and hydrodynamic drag are reduced. As a prominent example from nature, the lotus leaf-comprised of a wax-like material with micro- and nano-scaled roughness-has recently inspired numerous syntheses of superhydrophobic substrates. Due to the diverse applications of superhydrophobicity, much research has been devoted to the fabrication and investigations of hydrophobic micro-structures using established micro-fabrication techniques.
View Article and Find Full Text PDF