Publications by authors named "Masoud Arabieh"

Density functional theory (DFT) calculations were applied to study the ability of B to adsorb HS, SO, SO, CHSH, (CH)S, and CHS gases. Several exchange-correlation including B97D, PBE, B3LYP, M062X, and WB97XD were utilized to evaluate adsorption energies. The initial results showed that boundary boron atoms are the most appropriate interaction sites.

View Article and Find Full Text PDF

Using density functional theory, the effects of P, Al, and Ga atoms doping on electronic structure of boraphene (B) were investigated. The results show the highest change in electronic structure of doped-B systems belongs to Al-B structures wherein the gap energy of the system is decreased by 17.92%.

View Article and Find Full Text PDF

A selective method for the preconcentration and separation of trace amounts of Co(II) and Ni(II) by column solid phase extraction has been developed. The method is based on the adsorption of metal ions as N-(5-methyl-2-hydroxyacetophenone)-N'-(2-hydroxyacetophenone) ethylene diamine (MHE) complex on synthesized graphene oxide. Computational modeling based on PM6 semi-empirical potential energy surface was utilized to investigate the interaction of metallic complexes with graphene oxide sheet.

View Article and Find Full Text PDF

A modified, selective, highly sensitive and accurate procedure for the determination of trace amounts of manganese and iron ions is established in the presented work. 3-(1-Methyl-1H-pyrrol-2-yl)-1H-pyrazole-5-carboxylic acid (MPPC) and graphene oxide (GO) were used in a glass column as chelating reagent and as adsorbent respectively prior to their determination by flame atomic absorption spectrometry. The adsorption mechanism of titled metals complexes on GO was investigated by using computational chemistry approach based on PM6 semi-empirical potential energy surface (PES).

View Article and Find Full Text PDF

In this work, a rapid, simple and efficient homogeneous liquid-liquid microextraction via flotation assistance (HLLME-FA) method was developed based on applying low density organic solvents without no centrifugation. For the first time, a special extraction cell was designed to facilitate collection of the low-density solvent extraction in the determination of four polycyclic aromatic hydrocarbons (PAHs) in water samples followed by gas chromatography-flame ionization detector (GC-FID). The effect of different variables on the extraction efficiency was studied simultaneously using experimental design.

View Article and Find Full Text PDF

Extensive DFT and ab initio calculations were performed to characterize the conformational space of pamidronate, a typical pharmaceutical for bone diseases. Mono-, di- and tri-protic states of molecule, relevant for physiological pH range, were investigated for both canonical and zwitterionic tautomers. Semiempirical PM6 method were used for prescreening of the single bond rotamers followed by geometry optimizations at the B3LYP/6-31++G(d,p) and B3LYP/6-311++G(d,p) levels.

View Article and Find Full Text PDF