Publications by authors named "Masoud Aghajani"

Controlled growth of crosslinked polyamide (PA) thin films is demonstrated at the interface of a monomer-soaked hydrogel and an organic solution of the complementary monomer. Termed gel-liquid interfacial polymerization (GLIP), the resulting PA films are measured to be chemically and mechanically analogous to the active layer in thin film composite membranes. PA thin films are prepared using the GLIP process on both a morphologically homogeneous hydrogel prepared from poly(2-hydroxyethylmethacrylate) (PHEMA) and a phase-separated, heterogeneous hydrogel prepared from poly(acrylamide) (PAAm).

View Article and Find Full Text PDF

It is commonly believed that the overall permeation resistance of thin film composite (TFC) membranes is dictated by the crosslinked, ultrathin polyamide barrier layer, while the porous support merely serves as the mechanical support. Although this assumption might be the case under low transmembrane pressure, it becomes questionable under high transmembrane pressure. A highly porous support normally yields under a pressure of a few MPa, which can result in a significant level of compressive strain that may significantly increase the resistance to permeation.

View Article and Find Full Text PDF