Drought is an abiotic disturbance that reduces photosynthesis, plant growth, and crop yield. Ascorbic acid (AsA) was utilized as a seed preconditioning agent to assist broccoli ( var. ) in resisting drought.
View Article and Find Full Text PDFModified atmosphere packaging (MAP) alters the gaseous composition of air surrounding packaged goods to prevent deleterious oxidation associated reactions. MAP has been adopted for the storage of cannabis, though a recent study revealed little difference in terpene content under MAP conditions. Questions regarding its efficacy for preservation of high value compounds like terpenes and cannabinoids lost during postharvest storage remain.
View Article and Find Full Text PDFNeedle abscission in balsam fir has been linked to both cold acclimation and changes in lipid composition. The overall objective of this research is to uncover lipid changes in balsam fir during cold acclimation and link those changes with postharvest abscission. Branches were collected monthly from September to December and were assessed for cold tolerance via membrane leakage and chlorophyll fluorescence changes at -5, -15, -25, -35, and -45 °C.
View Article and Find Full Text PDFFruits and vegetables are generally known to contain important vitamins, fiber, essential minerals, and vital bioactive compounds that possess health benefits such as anti-inflammatory, antimicrobial, antioxidant, and anticancer properties [...
View Article and Find Full Text PDFDrought is an abiotic stress that decreases crop photosynthesis, growth, and yield. Ascorbic acid has been used as a seed preconditioning agent to help mitigate drought in some species, but not yet in broccoli ( var. ).
View Article and Find Full Text PDFFront Plant Sci
December 2015
Balsam fir (Abies balsamea) trees are commonly used as a specialty horticultural species for Christmas trees and associated greenery in eastern Canada and United States. Postharvest needle abscission has always been a problem, but is becoming an even bigger challenge in recent years presumably due to increased autumn temperatures and earlier harvesting practices. An increased understanding of postharvest abscission physiology in balsam fir may benefit the Christmas tree industry while simultaneously advancing our knowledge in senescence and abscission of conifers in general.
View Article and Find Full Text PDF