Brain-derived neurotrophic factor (BDNF), traditionally known for promoting neuronal growth and development, is also a modulator of synaptic transmission. In addition to the well-characterized effects at excitatory synapses, BDNF has been shown to acutely suppress inhibitory neurotransmission; however, the underlying mechanisms are unclear. We have previously shown that at inhibitory synapses in layer 2/3 of the somatosensory cortex, BDNF induces the mobilization of endogenous cannabinoids (eCBs) that act retrogradely to suppress GABA release.
View Article and Find Full Text PDFEndocannabinoids (eCBs) and neurotrophins, particularly brain-derived neurotrophic factor (BDNF), are potent neuromodulators found throughout the mammalian neocortex. Both eCBs and BDNF play critical roles in many behavioral and neurophysiological processes and are targets for the development of novel therapeutics. The effects of eCBs and BDNF are primarily mediated by the type 1 cannabinoid (CB1) receptor and the trkB tyrosine kinase receptor, respectively.
View Article and Find Full Text PDFAutism spectrum disorders (ASDs) are diagnosed on the basis of three behavioral features, namely, (1) deficits in social communication, (2) absence or delay in language and (3) stereotypy. The consensus regarding the neurological pathogenesis of ASDs is aberrant synaptogenesis and synapse function. Further, it is now widely accepted that ASD is neurodevelopmental in nature, placing emphasis on derangements occurring at the level of intra- and intercellular signaling during corticogenesis.
View Article and Find Full Text PDFThe endogenous cannabinoid (endocannabinoid) system is an important regulator of synaptic function. Endocannabinoids acutely modulate inhibitory and excitatory transmission, and also mediate long-term depression at GABAergic and glutamatergic synapses. Typically, endocannabinoid synthesis and release is stimulated by depolarization-induced calcium influx and/or activation of phospholipase-C (PLC) signaling triggered by mGluR activation.
View Article and Find Full Text PDFAims: The mesenchymal cushions lining the early embryonic heart undergo complex remodelling to form the membranous ventricular septum as well as the atrioventricular and semilunar valves in later life. Disruption of this process underlies the most common congenital heart defects. Here, we identified a novel role for Slit-Robo signalling in the development of the murine membranous ventricular septum and cardiac valves.
View Article and Find Full Text PDFThe elaborate cytoarchitecture of the mammalian neocortex requires the timely production of its constituent pyramidal neurons and interneurons and their disposition in appropriate layers. Numerous chemotropic factors present in the forebrain throughout cortical development play important roles in the orchestration of these events. The Roundabout (Robo) family of receptors and their ligands, the Slit proteins, are expressed in the developing forebrain, and are known to play important roles in the generation and migration of cortical interneurons.
View Article and Find Full Text PDFRationale: The Slit-Roundabout (Robo) signaling pathway has pleiotropic functions during Drosophila heart development. However, its role in mammalian heart development is largely unknown.
Objective: To analyze the role of Slit-Robo signaling in the formation of the pericardium and the systemic venous return in the murine heart.
Background And Purpose: The restoration of blood-flow following cerebral ischemia incites a series of deleterious cascades that exacerbate neuronal injury. Pharmacologic inhibition of the C3a-receptor ameliorates cerebral injury by attenuating post-ischemic inflammation. Recent reports also implicate C3a in the modulation of tissue repair, suggesting that complement may influence both injury and recovery at later post-ischemic time-points.
View Article and Find Full Text PDFNeurotrophins have been implicated in regulating neuronal differentiation, promoting neuronal survival, and modulating synaptic efficacy and plasticity. The prevailing view is that, depending on the target and mode of action, most neurotrophins can be trafficked and released either anterogradely or retrogradely in an activity-dependent manner. However, the prototypic neurotrophin, nerve growth factor (NGF), is not thought to be anterogradely delivered.
View Article and Find Full Text PDFIntroduction: The complement cascade is a critical mediator of the inflammatory response following cerebral ischemia. Recent work has demonstrated that genetic-deficiency of Mannose-binding lectin(MBL) ameliorates reperfusion injury and improves outcome in the acute phase of stroke. The present study sought to further delineate the pathogenic role of MBL in stroke and to examine whether the neuroprotection associated with MBL-deficiency is sustained beyond the acute phase.
View Article and Find Full Text PDFCajal-Retzius (CR) cells play a crucial role in the formation of the cerebral cortex, yet the molecules that control their development are largely unknown. Here, we show that Ebf transcription factors are expressed in forebrain signalling centres-the septum, cortical hem and the pallial-subpallial boundary-known to generate CR cells. We identified Ebf2, through fate mapping studies, as a novel marker for cortical hem- and septum-derived CR cells.
View Article and Find Full Text PDFIntroduction: Exposure to isoflurane gas prior to neurological injury, known as anesthetic preconditioning, has been shown to provide neuroprotective benefits in animal models of ischemic stroke. Given the common mediators of cellular injury in ischemic and hemorrhagic stroke, we hypothesize that isoflurane preconditioning will provide neurological protection in intracerebral hemorrhage (ICH).
Methods: 24 h prior to intracerebral hemorrhage, C57BL/6J mice were preconditioned with a 4-h exposure to 1% isoflurane gas or room air.
Intracerebral hemorrhage (ICH) is the second most common and deadliest form of stroke. Currently, no pharmacologic treatment strategies exist for this devastating disease. Following the initial mechanical injury suffered at hemorrhage onset, secondary brain injury proceeds through both direct cellular injury and inflammatory cascades, which trigger infiltration of granulocytes and monocytes, activation of microglia, and disruption of the blood-brain barrier with resulting cerebral edema.
View Article and Find Full Text PDFBackground: Ischemic stroke remains one of the leading causes of death and disability in the developed world. Despite many promising preclinical results, the only pharmacologic treatments proven effective in improving clinical outcome following ischemic stroke until now are administration of aspirin and acute thrombolysis using tissue-plasminogen activator.
Objective: To review currently approved pharmacologic therapies as well as promising future treatment strategies for acute ischemic stroke.