Propagation of an epidemic across a spatial network of communities is described by a variant of the SIR model accompanied by an intercommunity infectivity matrix. This matrix is estimated from fluxes between communities, obtained from cell-phone tracking data recorded in the USA between March 2020 and February 2021. We apply this model to the SARS-CoV-2 pandemic by fitting just one global parameter representing the frequency of interaction between individuals.
View Article and Find Full Text PDFThe Human Impacts Database (www.anthroponumbers.org) is a curated, searchable resource housing quantitative data relating to the diverse anthropogenic impacts on our planet, with topics ranging from sea-level rise to livestock populations, greenhouse gas emissions, fertilizer use, and beyond.
View Article and Find Full Text PDFIn a previous work (Huber2020065010), we discussed virus transmission dynamics modified by a uniform clustering of contacts in the population: close contacts within households and more distant contacts between households. In this paper, we discuss testing and tracing in such a stratified population. We propose a minimal tracing strategy consisting of random testing of the entire population plus full testing of the households of those persons found positive.
View Article and Find Full Text PDFShelter-in-place and other confinement strategies implemented in the current COVID-19 pandemic have created stratified patterns of contacts between people: close contacts within households and more distant contacts between the households. The epidemic transmission dynamics is significantly modified as a consequence. We introduce a minimal model that incorporates these household effects in the framework of mean-field theory and numerical simulations.
View Article and Find Full Text PDF