Previously our study has shown that the DNA methylation (DNAm) levels at CpG sites in the pro-inflammatory cytokine gene, TNF-alpha, decrease along with aging, suggesting the potential role of DNAm in aging and heightened inflammatory process leading to increased risk for delirium. However, DNAm differences between delirium cases and non-delirium controls have not been investigated directly. Therefore, we examined genome-wide DNAm differences in blood between patients with delirium and controls to identify useful epigenetic biomarkers for delirium.
View Article and Find Full Text PDFBackground: Delirium is common and dangerous, yet underdetected and undertreated. Current screening questionnaires are subjective and ineffectively implemented in busy hospital workflows. Electroencephalography (EEG) can objectively detect the diffuse slowing characteristic of delirium, but it is not suitable for high-throughput screening due to size, cost, and the expertise required for lead placement and interpretation.
View Article and Find Full Text PDFAim: Glucocorticoids play a major role in regulating the stress response, and an imbalance of glucocorticoids has been implicated in stress-related disorders. Within mouse models, CpGs across the genome have been shown to be differentially methylated in response to glucocorticoid treatment, and using the Infinium 27K array, it was shown that humans given synthetic glucocorticoids had DNA methylation (DNAm) changes in blood. However, further investigation of the extent to which glucocorticoids affect DNAm across a larger proportion of the genome is needed.
View Article and Find Full Text PDFDelirium in elderly patients is common and dangerous. Major risk factors include aging and exogenous insults, such as infection or surgery. In animal models, aging enhances pro-inflammatory cytokine release from microglia in response to exogenous insults.
View Article and Find Full Text PDF