Information on the detection of the presence and potential for degradation of synthetic polymers (SPs) under various environmental conditions is of increasing interest and concern to a wide range of specialists. At this stage, there is a need to understand the relationship between the main participants in the processes of (bio)degradation of SPs in various ecosystems (reservoirs with fresh and sea water, soils, etc.), namely the polymers themselves, the cells of microorganisms (MOs) participating in their degradation, and humic substances (HSs).
View Article and Find Full Text PDFThe unresolved challenges in the development of highly efficient, stable and controlled synthetic microbial consortia, as well as the use of natural consortia, are very attractive for science and technology. However, the consortia management should be done with the knowledge of how not only to accelerate but also stop the action of such "little pots". Moreover, there are a lot of microbial consortia, the activity of which should be suppressively controlled.
View Article and Find Full Text PDF4-(trimethylsilyl)morpholine O(CHCH)NSi(CH) (TMSM) was investigated as a single-source precursor for SiCNO films synthesis. Optical emission spectroscopy of plasma generated from TMSM/He, TMSM/H, and TMSM/NH gas mixtures revealed the presence of N, CH, H, CN, and CO species. The last two are suggested to be responsible for the lowering of carbon concentration in the films in comparison with the precursor.
View Article and Find Full Text PDFBackground: The proprioceptive system coordinates locomotion, but its role in short-term integration and recovery of motor activity in imbalance of motor patterns and body remains debated. The aim of this study is investigating the functional role of proprioceptive system in motor patterns and body balance in healthy young adults.
Methods: 70 participants (aged 20.
There is currently growing interest in the creation of artificial microbial consortia, especially in the field of developing and applying various bioremediation processes. Heavy metals, dyes, synthetic polymers (microplastics), pesticides, polycyclic aromatic hydrocarbons and pharmaceutical agents are among the pollutants that have been mainly targeted by bioremediation based on various consortia containing fungi (mycelial types and yeasts). Such consortia can be designed both for the treatment of soil and water.
View Article and Find Full Text PDFInterest in enzymes capable of neutralizing various mycotoxins is quite high. The methods used for the screening and selection of enzymes that catalyze the detoxification of mycotoxins should be sensitive and fast. However toxic compounds can be generated under the action of such enzymes.
View Article and Find Full Text PDFOpen Access Maced J Med Sci
February 2023
Background: At present, more than 8000 sesquiterpene lactones have been isolated and described from natural sources, a significant part of which has cytotoxicity and antitumor activity. One of the practically available sesquiterpene lactones is arglabin, which, as a renewable material, is used for the synthesis of new compounds. The article presents data on the study of cytotoxicity and antitumor activity of the arglabin and its derivatives using molecular modeling methods and, in the experiment and .
View Article and Find Full Text PDFVarious processes designed for the humification (HF) of animal husbandry wastes, primarily bird droppings, reduce their volumes, solve environmental problems, and make it possible to obtain products with artificially formed humic substances (HSs) as analogues of natural HSs, usually extracted from fossil sources (coal and peat). This review studies the main characteristics of various biological and physicochemical methods of the HF of animal wastes (composting, anaerobic digestion, pyrolysis, hydrothermal carbonation, acid or alkaline hydrolysis, and subcritical water extraction). A comparative analysis of the HF rates and HS yields in these processes, the characteristics of the resulting artificial HSs (humification index, polymerization index, degree of aromaticity, etc.
View Article and Find Full Text PDFBiomimetics, which are similar to natural compounds that play an important role in the metabolism, manifestation of functional activity and reproduction of various fungi, have a pronounced attraction in the current search for new effective antifungals. Actual trends in the development of this area of research indicate that unnatural amino acids can be used as such biomimetics, including those containing halogen atoms; compounds similar to nitrogenous bases embedded in the nucleic acids synthesized by fungi; peptides imitating fungal analogs; molecules similar to natural substrates of numerous fungal enzymes and quorum-sensing signaling molecules of fungi and yeast, etc. Most parts of this review are devoted to the analysis of semi-synthetic and synthetic antifungal peptides and their targets of action.
View Article and Find Full Text PDFA novel group of conjugative plasmids of is characterized. The prototype plasmid pPPUT-Tik1-1 (153,663 bp), isolated from a permafrost strain of Tik1, carries a defective mercury transposon, Tn, and a streptomycin resistance transposon, Tn Ten plasmids and 34 contigs with backbone regions closely related to pPPUT-Tik1-1 have been found in GenBank. Two of these plasmids from clinical strains of and are almost identical to the ancient plasmid.
View Article and Find Full Text PDFThe defeat of the central motor neuron leads to the motor disorders. Patients lose the ability to control voluntary muscles, for example, of the upper limbs, which introduces a fundamental dissonance in the possibility of daily use of a computer or smartphone. As a result, the patients lose the ability to communicate with other people.
View Article and Find Full Text PDFActive research of metal-containing compounds and enzymes as effective antifungal agents is currently being conducted due to the growing antifungal resistance problem. Metals are attracting special attention due to the wide variety of ligands that can be used for them, including chemically synthesized and naturally obtained variants as a result of the so-called "green synthesis". The main mechanism of the antifungal action of metals is the triggering of the generation and accumulation of reactive oxygen species (ROS).
View Article and Find Full Text PDFQuorum sensing (QS) of various microorganisms (bacteria, fungi, microalgae) today attracts the attention of researchers mainly from the point of view of clarifying the biochemical basics of this general biological phenomenon, establishing chemical compounds that regulate it, and studying the mechanisms of its realization. Such information is primarily aimed at its use in solving environmental problems and the development of effective antimicrobial agents. This review is oriented on other aspects of the application of such knowledge; in particular, it discusses the role of QS in the elaboration of various prospective biocatalytic systems for different biotechnological processes carried out under aerobic and anaerobic conditions (synthesis of enzymes, polysaccharides, organic acids, etc.
View Article and Find Full Text PDFPurpose: This experimental study was conducted during the post-COVID-19 period to investigate the relationship between the quality of life 9 months after and the severity of the SARS-CoV-2 infection in two scenarios: hospitalization (with/without medical oxygen) and outpatient treatment.
Methods: We employed the EQ-5D-5L Quality of Life tests and the PSQI as a survey to evaluate respondents' quality of life 9 months after a previous SARS-CoV-2 infection of varying severity.
Results: We identified a clear difference in the quality of life of respondents, as measured on the 100-point scale of the EQ-5D-5L test, which was significantly lower 9 months after a previous SARS-CoV-2 infection for Group 1 ( = 14), respondents who had received medical attention for SARS-CoV-2 infection in a hospital with oxygen treatment, compared to those with the SARS-CoV-2 infection who were treated without oxygen treatment (Group 2) ( = 12) and those who were treated on an outpatient basis (Group 3) ( = 13) (H = 7.
The review focuses on the appearance of various pharmaceutical pollutants in various water sources, which dictates the need to use various methods for effective purification and biodegradation of the compounds. The use of various biological catalysts (enzymes and cells) is discussed as one of the progressive approaches to solving problems in this area. Antibiotics, hormones, pharmaceuticals containing halogen, nonsteroidal anti-inflammatory drugs, analgesics and antiepileptic drugs are among the substrates for the biocatalysts in water purification processes that can be carried out.
View Article and Find Full Text PDFTo reduce the toxicity of modern feeds polluted by mycotoxins, various sorbents are added to them when feeding animals. A part of the mycotoxins is excreted from the body of animals with these sorbents and remains in the manure. As a result, bulk animal wastes containing mixtures of mycotoxins are formed.
View Article and Find Full Text PDFMultidrug-resistant bacteria form serious problems in many areas, including medicine and the food industry. At the same time, great interest is shown in the transfer or enhancement of antimicrobial properties to various materials by modifying them with enzymes. The use of enzymes in biomaterials with antimicrobial properties is important because enzymes can be used as the main active components providing antimicrobial properties of functionalized composite biomaterials, or can serve as enhancers of the antimicrobial action of certain substances (antibiotics, antimicrobial peptides, metal nanoparticles, etc.
View Article and Find Full Text PDFOrganophosphorus hydrolase, containing a genetically introduced hexahistidine sequence (His-OPH), attracts the attention of researchers by its promiscuous activity in hydrolytic reactions with various substrates, such as organophosphorus pesticides and chemical warfare agents, mycotoxins, and -acyl homoserine lactones. The application of various carrier materials (metal-organic frameworks, polypeptides, bacterial cellulose, polyhydroxybutyrate, succinylated gelatin, etc.) for the immobilization and stabilization of His-OPH by various methods, enables creation of biocatalysts with various properties and potential uses, in particular, as antidotes, recognition elements of biosensors, in fibers with chemical and biological protection, dressings with antimicrobial properties, highly porous sorbents for the degradation of toxicants, including in flow systems, etc.
View Article and Find Full Text PDFThis review briefly summarizes the data on the mechanisms of development of the adaptability of to various living conditions in the environment and in the clinic. A comparative analysis of the genomes of free-living and clinical strains of , as well as the genomes of and has been carried out. It has been shown that plasmids, both large and small, play a key role in the formation of the adaptability of to their living conditions.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
October 2022
Combinations of various strategic approaches to the suppression of methanogenesis and the formation of biogas with a simultaneous decrease in the ratio of methane in its composition were investigated. Introduction of methanogenesis suppressors such as redox derivatives of humic acids, potassium persulfate (KSO), possessing oxidizing and electron acceptor properties, enzyme hexahistidine-containing organophosphorus hydrolase with high lactonase activity and polypeptide antimicrobial agent bacitracin into the media with anaerobic consortia were studied. The effect of these substances was directed at various participants of the natural methanogenic consortium, as well as on the biochemical processes carried out by them.
View Article and Find Full Text PDFMethanogenic biotransformation of unusual substrates (sulfur (S)-containing wastes: non-purified vacuum gas oil, straight-run gasoline fraction (Naphtha), gas condensate, and straight-run diesel fraction) coming from oil industry after their oxidative desulfurization was investigated. Nitrogen-containing wastes (hydrolysates of chicken manure and Chlorella vulgaris biomass) were added as co-substrates to mixture with oil industry wastes. The 100 % conversion of S-organic compounds to inorganic sulfide accumulated in the reaction liquid medium was achieved with simultaneous production of biogas containing high methane percent (greater than 70 %).
View Article and Find Full Text PDFNew combined proteinous (enzymatic) nanobiocatalysts capable of destructing mycotoxins in mixtures were developed and investigated in vitro and in vivo. Candidate enzymes for such combined biocatalysts were computationally screened using molecular docking of mycotoxins to the proteins. Catalytic characteristics of the 7 selected enzymes were estimated in the potential reactions with various mycotoxins (aflatoxin B, citrinin, deoxynivalenol, ergotamine, fumonisin B, gliotoxin, ochratoxin A, patulin, sterigmatocystin, T-2 toxin, zearalenone) at different pH values.
View Article and Find Full Text PDFThis work was aimed at the development of an immobilized artificial consortium (IMAC) based on microorganisms belonging to the Gram-positive and Gram-negative bacterial cells capable of jointly carrying out the rapid and effective degradation of different organophosphorus pesticides (OPPs): paraoxon, parathion, methyl parathion, diazinon, chlorpyrifos, malathion, dimethoate, and demeton-S-methyl. A cryogel of poly(vinyl alcohol) was applied as a carrier for the IMAC. After a selection was made between several candidates of the genera and , the required combination of two cultures ( and ) was found.
View Article and Find Full Text PDFObjective: The aim: To find solutions for the ecological problems of epidemics danger to acute respiratory infections, especially coronavirus infections, during the organization of mass sporting events by establishing the features of its development and providing epidemiological measures to reduce the negative impact of epidemics for human health and activities, including athletes at both national and international levels.
Patients And Methods: Materials and methods: The methodological basis of this study is general and special scientific methods: dialectical, analysis and synthesis, synergism, historical and legal, formal and logical, systematic and structural, comparative and legal, formal and legal. Empirical data were scientific works, international regulations, EU legislation, United States and other countries.
We have studied for the first time the role of hydrophobicity of the mesoporous silicate SBA-15 on the activity and the service life of a catalyst in the peroxide oxidation of sulfur-containing compounds. Immobilization of the molybdate anion on the SBA-15 support via ionic bonding with triethylammonium groups allows us not only to decrease the reaction temperature to a relatively low value of 60 °C without a drop in the dibenzothiophene conversion degree but also to increase the service life of the catalyst to many times that of the known analogs. The support and catalyst structures were investigated by low-temperature nitrogen adsorption/desorption, Fourier-transform infrared spectroscopy, X-ray fluorescence analysis, and transmission electron microscopy.
View Article and Find Full Text PDF