Publications by authors named "Masliah E"

Synucleinopathies are age-related neurological disorders characterized by the abnormal accumulation of α-synuclein (α-syn) in neuronal and non-neuronal cells. It has been proposed that microglial cells play an important role in synucleinopathy neuroinflammation, as well as homeostatically, such as in the clearance of α-syn aggregates in the brain. Here, we examined the effects of microglia on the pathogenesis of synucleinopathies by cell depletion in a mouse model of synucleinopathies.

View Article and Find Full Text PDF
Article Synopsis
  • Multiple system atrophy (MSA) is a neurodegenerative disease that leads to symptoms like parkinsonism and ataxia, but its genetic causes are not well understood and treatment options are limited to supportive care.
  • A comprehensive study involving the whole genome sequencing of nearly 900 MSA patients and over 7,000 controls discovered four key genetic risk factors associated with the disease.
  • The research identified potential susceptibility genes and provided insights into how genetic variations influence gene expression in brain cells, offering a valuable resource for further studies on similar diseases.
View Article and Find Full Text PDF

The neuroinflammatory process in synucleinopathies of the aging population such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB) involves microglial activation as well as infiltration of the CNS by T cells and natural killer T cells (NKTs). To evaluate the potential of targeting NKT cells to modulate neuroinflammation, we treated α-syn transgenic (tg) mice (e.g.

View Article and Find Full Text PDF
Article Synopsis
  • The National Institute on Aging (NIA) was created in 1974 to study aging and how it affects older people’s health and happiness.
  • Early research by the NIA showed that studying aging was really important and helped scientists learn more about aging, diseases, and staying healthy.
  • Now, the NIA is encouraging more diverse researchers to join the field to keep making progress in aging research.
View Article and Find Full Text PDF

Parkinson's disease is characterized by a progressive accumulation of alpha-Synuclein (αSyn) neuronal inclusions called Lewy bodies in the nervous system. Lewy bodies can arise from the cell-to-cell propagation of αSyn, which can occur via sequential steps of secretion and uptake. Here, by fusing a removable short signal peptide to the N-terminus of αSyn, we developed a novel mouse model with enhanced αSyn secretion and cell-to-cell transmission.

View Article and Find Full Text PDF

We examined whether cognitive reserve moderated the relationship between neurodegeneration and cognition in 67 postmortem persons with HIV (PWH) who were cognitively assessed within 1 year of death. Cognitive reserve was measured via the Wide Range Achievement Test-4 reading subtest (WRAT4). Synaptodendritic neurodegeneration was based on densities of synaptophysin and microtubule-associated protein 2 immunohistochemical reactivity in frontal cortex, and categorized as minimal, moderate, or severe (tertile-split).

View Article and Find Full Text PDF

Introduction: Alpha-synuclein (α-Syn) aggregation, transmission, and contribution to neurotoxicity represent central mechanisms underlying Parkinson's disease. The plant alkaloid "nicotine" was reported to attenuate α-Syn aggregation in different models, but its precise mode of action remains unclear.

Methods: In this study, we investigated the effect of 2-week chronic nicotine treatment on α-Syn aggregation, neuroinflammation, neurodegeneration, and motor deficits in D-line α-Syn transgenic mice.

View Article and Find Full Text PDF

Neurodegenerative disorders of aging are characterized by the progressive accumulation of proteins such as α-synuclein (α-syn) and amyloid beta (Aβ). Misfolded and aggregated α-syn has been implicated in neurological disorders such as Parkinson's disease, and Dementia with Lewy Bodies, but less so in Alzheimer's Disease (AD), despite the fact that accumulation of α-syn has been confirmed in over 50% of postmortem brains neuropathologically diagnosed with AD. To date, no therapeutic strategy has effectively or consistently downregulated α-syn in AD.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) cases are often characterized by the pathological accumulation of α-synuclein (α-syn) in addition to amyloid-β (Aβ) and tau hallmarks. The role of α-syn has been extensively studied in synucleinopathy disorders, but less so in AD. Recent studies have shown that α-syn may also play a role in AD and its downregulation may be protective against the toxic effects of Aβ accumulation.

View Article and Find Full Text PDF
Article Synopsis
  • - The study addresses the issue of limited ancestral diversity in genome-wide association studies (GWAS), which makes it hard to find genetic risk variants in non-European ancestry groups, focusing on Alzheimer's Disease (AD).
  • - Researchers analyzed a multi-ancestry GWAS dataset within the Alzheimer's Disease Genetics Consortium (ADGC) involving individuals from various ancestries, identifying 13 shared risk loci and 3 ancestry-specific loci, highlighting the benefits of diverse samples.
  • - The findings underscore the importance of including underrepresented populations in genetic research, suggesting that even smaller sample sizes can lead to the discovery of novel genetic variants related to AD and implicating specific biological pathways like amyloid regulation and neuronal development.
View Article and Find Full Text PDF
Article Synopsis
  • A genome-wide association study (GWAS) on multiple system atrophy (MSA) was conducted using data from various populations including Japanese, Korean, Chinese, European, and North American samples.
  • The study identified a significant genetic variant, rs2303744 on chromosome 19, which showed strong association with MSA in East Asian populations and was also significant in European/North American samples despite differences in allele frequencies.
  • The associated variant leads to an amino acid change in the cPLA2γ enzyme, resulting in reduced enzymatic activity that could disrupt biological processes involving membrane phospholipids and α-synuclein, potentially contributing to the disease's development.
View Article and Find Full Text PDF

Alterations in the p38 mitogen-activated protein kinases (MAPKs) play an important role in the pathogenesis of dementia with Lewy bodies (DLB) and Parkinson's disease (PD). Activation of the p38α MAPK isoform and mislocalization of the p38γ MAPK isoform are associated with neuroinflammation and synaptic degeneration in DLB and PD. Therefore, we hypothesized that p38α might be associated with neuronal p38γ distribution and synaptic dysfunction in these diseases.

View Article and Find Full Text PDF
Article Synopsis
  • Parkinson's disease (PD) is a progressive neurodegenerative disorder, and understanding how different cell types contribute to its mechanisms is still a challenge.
  • Researchers analyzed over 113,000 nuclei from the substantia nigra in both healthy individuals and PD patients, revealing important changes in gene regulation specific to different cell types.
  • The study identified dysregulated regulatory elements and 656 target genes connected to PD, emphasizing unique expression patterns in cells like dopaminergic neurons and glial cells, which are crucial for understanding PD's development.
View Article and Find Full Text PDF

Several studies have identified mutations in neuroprotective genes in a few cases of Parkinson's disease (PD); however, the role of alternative splicing changes in PD remains unelucidated. Based on the transcriptome analysis of substantia nigra (SN) tissues obtained from PD cases and age-matched healthy controls, we identified a novel alternative splicing variant of , lacking exon 6 ( ), frequently detected in the SN of patients with PD. We found that the exon 6 skipping of induces mitochondrial dysfunction and impaired antioxidant capability.

View Article and Find Full Text PDF

Background: Synucleinopathies are a group of neurodegenerative disorders that are pathologically characterized by intracellular aggregates called Lewy bodies. Lewy bodies are primarily composed of α-synuclein (asyn) protein, which is mostly phosphorylated at serine 129 (pS129) when aggregated and therefore used as a marker for pathology. Currently commercial antibodies against pS129 asyn stain aggregates well but in healthy brains cross react with other proteins, thus making it difficult to specifically detect physiological pS129 asyn.

View Article and Find Full Text PDF

Although multiple sclerosis (MS) and multiple system atrophy (MSA) are both characterized by impaired oligodendrocytes (OLs), the aetiological relevance remains obscure. Given inherent stressors affecting OLs, the objective of the present study was to discuss the possible role of amyloidogenic evolvability (aEVO) in these conditions. Hypothetically, in aEVO, protofibrils of amyloidogenic proteins (APs), including β-synuclein and β-amyloid, might form in response to diverse stressors in parental brain.

View Article and Find Full Text PDF