Publications by authors named "Masja Nierop Groot"

The aim of this study was to compare the sporicidal effect of the disinfectants peracetic acid (PAA) or hydrogen peroxide (HO) applied as a fog or as a liquid. The efficacy of fogging of the disinfectants was tested in a closed isolator cabinet using highly heat and chemical-resistant spores of Geobacillus stearothermophilus. Fogging of a 0.

View Article and Find Full Text PDF

Fungi are able to grow on diverse food products and contribute to food spoilage worldwide causing food loss. Consumers prefer freshly squeezed fruit juices, however, the shelf life of these juices is limited due to outgrowth of yeast and fungi. The shelf life of pulsed electric field (PEF) treated juice can be extended from 8 days up to a few weeks before spoilage by moulds becomes apparent.

View Article and Find Full Text PDF

Next to applications in fermentations, Lactobacillus plantarum is recognized as a food spoilage organism, and its dispersal from biofilms in food processing environments might be implicated in contamination or recontamination of food products. This study provides new insights into biofilm development by L. plantarum WCFS1 through comparative analysis of wild type and mutants affected in cell surface composition, including mutants deficient in the production of Sortase A involved in the covalent attachment of 27 predicted surface proteins to the cell wall peptidoglycan (ΔsrtA) and mutants deficient in the production of capsular polysaccharides (CPS1-4, Δcps1-4).

View Article and Find Full Text PDF

Food spoilage is often caused by microorganisms. The predominant spoilage microorganisms of pasteurized, chilled ready-to-eat (RTE) mixed rice-vegetable meals stored at 7°C were isolated and determined as Paenibacillus species. These sporeforming psychrotrophic bacteria are well adapted to grow in the starch-rich environment of pasteurized and chilled meals.

View Article and Find Full Text PDF

Biofilms of Lactobacillus plantarum are a potential source for contamination and recontamination of food products. Although biofilms have been mostly studied using single species or even single strains, it is conceivable that in a range of environmental settings including food processing areas, biofilms are composed of multiple species with each species represented by multiple strains. In this study six spoilage related L.

View Article and Find Full Text PDF

Unlabelled: Spore germination of 17 Bacillus cereus food isolates and reference strains was evaluated using flow cytometry analysis in combination with fluorescent staining at a single-spore level. This approach allowed for rapid collection of germination data under more than 20 conditions, including heat activation of spores, germination in complex media (brain heart infusion [BHI] and tryptone soy broth [TSB]), and exposure to saturating concentrations of single amino acids and the combination of alanine and inosine. Whole-genome sequence comparison revealed a total of 11 clusters of operons encoding germinant receptors (GRs): GerK, GerI, and GerL were present in all strains, whereas GerR, GerS, GerG, GerQ, GerX, GerF, GerW, and GerZ (sub)clusters showed a more diverse presence/absence in different strains.

View Article and Find Full Text PDF

Spores of thermophilic spore-forming bacteria are a common cause of contamination in dairy products. Here, we report draft genome sequences of four thermophilic strains from a milk-processing plant or standard milk, namely, a Geobacillus thermoglucosidans isolate (TNO-09.023), Geobacillus stearothermophilus TNO-09.

View Article and Find Full Text PDF

The ability of spores to recover and grow out after food processing is affected by cellular factors and by the outgrowth conditions. In the current communication we studied the recovery and outgrowth of individually sorted spores in BHI and rice broth media and on agar plates using flow cytometry. We show that recovery of wet heat treated Bacillus cereus ATCC 14579 spores is affected by matrix composition with highest recovery in BHI broth or on rice agar plates, compared to BHI agar plates and rice broth.

View Article and Find Full Text PDF

Iron is an important element for bacterial viability, however it is not readily available in most environments. We studied the ability of 20 undomesticated food isolates of Bacillus cereus and two reference strains for capacity to use different (complex) iron sources for growth and biofilm formation. Studies were performed in media containing the iron scavenger 2,2-Bipyridine.

View Article and Find Full Text PDF

Lactobacillus plantarum is a widespread member of the Lactobacillus genus and frequently isolated from spoiled acidified food products. Here, we report the draft genome sequences of three L. plantarum food isolates.

View Article and Find Full Text PDF

We characterised carbohydrate utilisation of 20 newly sequenced Bacillus cereus strains isolated from food products and food processing environments and two laboratory strains, B. cereus ATCC 10987 and B. cereus ATCC 14579.

View Article and Find Full Text PDF

Bacillus cereus is a foodborne pathogen causing emetic and diarrheal-type syndromes. Here, we report the whole-genome sequences of 11 B. cereus food isolates.

View Article and Find Full Text PDF

Spore-forming bacteria are ubiquitous in nature. The resistance properties of bacterial spores lie at the heart of their widespread occurrence in food ingredients and foods. The efficacy of inactivation by food-processing conditions is largely determined by the characteristics of the different types of spores, whereas food composition and storage conditions determine the eventual germination and outgrowth of surviving spores.

View Article and Find Full Text PDF

Spores are widely present in the environment and are common contaminants in the food chain, creating a challenge for food industry. Nowadays, heat treatments conventionally applied in food processing may become milder to comply with consumer desire for products with higher sensory and nutritional values. Consequently subpopulations of spores may emerge that are sublethally damaged rather than inactivated.

View Article and Find Full Text PDF

Sigma 54 is a transcriptional regulator predicted to play a role in physical interaction of bacteria with their environment, including virulence and biofilm formation. In order to study the role of Sigma 54 in Bacillus cereus, a comparative transcriptome and phenotypic study was performed using B. cereus ATCC 14579 WT, a markerless rpoN deletion mutant, and its complemented strain.

View Article and Find Full Text PDF

Lactobacillus plantarum has been associated with food spoilage in a wide range of products and the biofilm growth mode has been implicated as a possible source of contamination. In this study we analysed the biofilm forming capacity of L. plantarum WCFS1 and six food spoilage isolates.

View Article and Find Full Text PDF

Spoilage of heat treated foods can be caused by the presence of surviving spore-formers. It is virtually impossible to prevent contamination at the primary production level as spores are ubiquitous present in the environment and can contaminate raw products. As a result spore inactivation treatments are widely used by food producing industries to reduce the microbial spore loads.

View Article and Find Full Text PDF

Biofilm formation of Bacillus cereus reference strains ATCC 14579 and ATCC 10987 and 21 undomesticated food isolates was studied on polystyrene and stainless steel as contact surfaces. For all strains, the biofilm forming capacity was significantly enhanced when in contact with stainless steel (SS) as a surface as compared to polystyrene (PS). For a selection of strains, the total CFU and spore counts in biofilms were determined and showed a good correlation between CFU counts and total biomass of these biofilms.

View Article and Find Full Text PDF

Bacterial spores are resistant to severe conditions and form a challenge to eradicate from food or food packaging material. Cold atmospheric plasma (CAP) treatment is receiving more attention as potential sterilization method at relatively mild conditions but the exact mechanism of inactivation is still not fully understood. In this study, the biocidal effect by nitrogen CAP was determined for chemical (hypochlorite and hydrogen peroxide), physical (UV) and heat-resistant spores.

View Article and Find Full Text PDF

One of the major concerns in the production of dairy concentrates is the risk of contamination by heat-resistant spores from thermophilic bacteria. In order to acquire more insight in the composition of microbial communities occurring in the dairy concentrate industry, a bar-coded 16S amplicon sequencing analysis was carried out on milk, final products, and fouling samples taken from dairy concentrate production lines. The analysis of these samples revealed the presence of DNA from a broad range of bacterial taxa, including a majority of mesophiles and a minority of (thermophilic) spore-forming bacteria.

View Article and Find Full Text PDF

Within a microbial risk assessment framework, modeling the maximum population density (MPD) of a pathogenic microorganism is important but often not considered. This paper describes a model predicting the MPD of Salmonella on alfalfa as a function of the initial contamination level, the total count of the indigenous microbial population, the maximum pathogen growth rate and the maximum population density of the indigenous microbial population. The model is parameterized by experimental data describing growth of Salmonella on sprouting alfalfa seeds at inoculum size, native microbial load and Pseudomonas fluorescens 2-79.

View Article and Find Full Text PDF

Population heterogeneity complicates the predictability of the outgrowth kinetics of individual spores. Flow cytometry sorting and monitoring of the germination and outgrowth of single dormant spores allowed the quantification of acid-induced spore population heterogeneity at pH 5.5 and in the presence of sorbic acid.

View Article and Find Full Text PDF

Bacillus cereus is a gram-positive, facultative anaerobic, endospore-forming toxicogenic human pathogen. Endospores are highly specialized, metabolically dormant cell types that are resistant to extreme environmental conditions, including heat, dehydration and other physical stresses. B.

View Article and Find Full Text PDF

Digestion patterns of chromosomal DNAs of Bacillus cereus and Bacillus weihenstephanensis strains suggest that Sau3AI-type restriction modification systems are widely present among the isolates tested. In vitro methylation of plasmid DNA was used to enhance poor plasmid transfer upon electroporation to recalcitrant strains that carry Sau3AI restriction barriers.

View Article and Find Full Text PDF

The pneumococcal serotype 14 polysaccharide was produced in Lactococcus lactis by coexpressing pneumococcal polysaccharide type 14-specific genes (cpsFGHIJKL(14)) with the lactococcal regulatory and priming glucosyltransferase-encoding genes specific for B40 polysaccharide (epsABCD(B40)). The polysaccharide produced by Lactococcus was secreted in the medium, simplifying downstream processing and polysaccharide isolation from culture broth.

View Article and Find Full Text PDF