RAD52 is important for the repair of DNA double-stranded breaks, mitotic DNA synthesis and alternative telomere length maintenance. Central to these functions, RAD52 promotes the annealing of complementary single-stranded DNA (ssDNA) and provides an alternative to BRCA2/RAD51-dependent homologous recombination repair. Inactivation of RAD52 in homologous-recombination-deficient BRCA1- or BRCA2-defective cells is synthetically lethal, and aberrant expression of RAD52 is associated with poor cancer prognosis.
View Article and Find Full Text PDFGlial-cell line derived neurotrophic factor (GDNF) bound to its co-receptor GFRα1 stimulates the RET receptor tyrosine kinase, promoting neuronal survival and neuroprotection. The GDNF-GFRα1 complex also supports synaptic cell adhesion independently of RET. Here, we describe the structure of a decameric GDNF-GFRα1 assembly determined by crystallography and electron microscopy, revealing two GFRα1 pentamers bridged by five GDNF dimers.
View Article and Find Full Text PDFLife Sci Alliance
September 2023
An intronic GGGGCC repeat expansion in is a common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. The repeats are transcribed in both sense and antisense directions to generate distinct dipeptide repeat proteins, of which poly(GA), poly(GR), and poly(PR) have been implicated in contributing to neurodegeneration. Poly(PR) binding to RNA may contribute to toxicity, but analysis of poly(PR)-RNA binding on a transcriptome-wide scale has not yet been carried out.
View Article and Find Full Text PDFImmunoglobulin Fc receptors are cell surface transmembrane proteins that bind to the Fc constant region of antibodies and play critical roles in regulating immune responses by activation of immune cells, clearance of immune complexes and regulation of antibody production. FcμR is the immunoglobulin M (IgM) antibody isotype-specific Fc receptor involved in the survival and activation of B cells. Here we reveal eight binding sites for the human FcμR immunoglobulin domain on the IgM pentamer by cryogenic electron microscopy.
View Article and Find Full Text PDFNon-native disulfide bonds are dynamic covalent bridges that form post-translationally between two cysteines within the same protein (intramolecular) or with a neighboring protein (intermolecular), frequently due to changes in the cellular redox potential. The reversible formation of non-native disulfides is intimately linked to alterations in protein function; while they can provide a mechanism to protect against cysteine overoxidation, they are also involved in the early stages of protein multimerization, a hallmark of several protein aggregation diseases. Yet their identification using current protein chemistry technology remains challenging, mainly because of their fleeting reactivity.
View Article and Find Full Text PDFVariants of UNC13A, a critical gene for synapse function, increase the risk of amyotrophic lateral sclerosis and frontotemporal dementia, two related neurodegenerative diseases defined by mislocalization of the RNA-binding protein TDP-43. Here we show that TDP-43 depletion induces robust inclusion of a cryptic exon in UNC13A, resulting in nonsense-mediated decay and loss of UNC13A protein. Two common intronic UNC13A polymorphisms strongly associated with amyotrophic lateral sclerosis and frontotemporal dementia risk overlap with TDP-43 binding sites.
View Article and Find Full Text PDFMethionine adenosyltransferase (MAT) catalyzes the adenosine 5'-triphosphate (ATP) and l-methionine (l-Met) dependent formation of -adenosyl-l-methionine (SAM), the principal methyl donor of most biological transmethylation reactions. We carried out in-depth kinetic studies to further understand its mechanism and interaction with a potential regulator, Mat2B. The initial velocity pattern and results of product inhibition by SAM, phosphate, and pyrophosphate, and dead-end inhibition by the l-Met analog cycloleucine (l-cLeu) suggest that Mat2A follows a strictly ordered kinetic mechanism where ATP binds before l-Met and with SAM released prior to random release of phosphate and pyrophosphate.
View Article and Find Full Text PDFThe coronaviral spike is the dominant viral antigen and the target of neutralizing antibodies. We show that SARS-CoV-2 spike binds biliverdin and bilirubin, the tetrapyrrole products of heme metabolism, with nanomolar affinity. Using cryo-electron microscopy and x-ray crystallography, we mapped the tetrapyrrole interaction pocket to a deep cleft on the spike N-terminal domain (NTD).
View Article and Find Full Text PDFRNA-binding proteins often contain multiple RNA-binding domains connected by short flexible linkers. This domain arrangement allows the protein to bind the RNA with greater affinity and specificity than would be possible with individual domains and sometimes to remodel its structure. It is therefore important to understand how multiple modules interact with RNA because it is the modular nature of these proteins which specifies their biological function.
View Article and Find Full Text PDFThe coronaviral spike is the dominant viral antigen and the target of neutralizing antibodies. We show that SARS-CoV-2 spike binds biliverdin and bilirubin, the tetrapyrrole products of haem metabolism, with nanomolar affinity. Using cryo-electron microscopy and X-ray crystallography we mapped the tetrapyrrole interaction pocket to a deep cleft on the spike N-terminal domain (NTD).
View Article and Find Full Text PDFRev Fac Cien Med Univ Nac Cordoba
December 2020
Introduction: Due to the COVID-19 pandemic, health systems have had to adapt to the growing demand for care. Telemedicine is a practical tool for outpatient monitoring of correctly selected patients.
Materials And Methods: A descriptive study of a prospective cohort of patients under telemedicine follow-up at the Hospital Italiano de San Justo was carried out.
MutSα and MutSβ play important roles in DNA mismatch repair and are linked to inheritable cancers and degenerative disorders. Here, we show that MSH2 and MSH3, the two components of MutSβ, bind SLX4 protein, a scaffold for the assembly of the SLX1-SLX4-MUS81-EME1-XPF-ERCC1 (SMX) trinuclease complex. SMX promotes the resolution of Holliday junctions (HJs), which are intermediates in homologous recombinational repair.
View Article and Find Full Text PDFSubtilisin-like serine peptidases (subtilases) play important roles in the life cycle of many organisms, including the protozoan parasites that are the causative agent of malaria, Plasmodium spp. As with other peptidases, subtilase proteolytic activity has to be tightly regulated in order to prevent potentially deleterious uncontrolled protein degradation. Maturation of most subtilases requires the presence of an N-terminal propeptide that facilitates folding of the catalytic domain.
View Article and Find Full Text PDFIt is now accepted that reactive oxygen species (ROS) are not only dangerous oxidative agents but also chemical mediators of the redox cell signaling and innate immune response. A central role in ROS-controlled production is played by the NADPH oxidases (NOXs), a group of seven membrane-bound enzymes (NOX1-5 and DUOX1-2) whose unique function is to produce ROS. Here, we describe the regulation of NOX5, a widespread family member present in cyanobacteria, protists, plants, fungi, and the animal kingdom.
View Article and Find Full Text PDFSeveral enzymes can simultaneously interact with multiple intracellular metabolites, however, how the allosteric effects of distinct ligands are integrated to coordinately control enzymatic activity remains poorly understood. We addressed this question using, as a model system, the glycolytic enzyme pyruvate kinase M2 (PKM2). We show that the PKM2 activator fructose 1,6-bisphosphate (FBP) alone promotes tetramerisation and increases PKM2 activity, but addition of the inhibitor L-phenylalanine (Phe) prevents maximal activation of FBP-bound PKM2 tetramers.
View Article and Find Full Text PDFUbiquitylation, the posttranslational linkage of ubiquitin moieties to lysines in target proteins, helps regulate a myriad of biological processes. Ubiquitin, and sometimes ubiquitin-homology domains, are recognized by ubiquitin-binding domains, including CUE domains. CUE domains are thus generally thought to function by mediating interactions with ubiquitylated proteins.
View Article and Find Full Text PDFIron-sulphur (Fe-S) clusters are ubiquitous co-factors which require multi-protein systems for their synthesis. In Mycobacterium tuberculosis, the Rv1460-Rv1461-Rv1462-Rv1463-csd-Rv1465-Rv1466 operon (suf operon) encodes the primary Fe-S cluster biogenesis system. The first gene in this operon, Rv1460, shares homology with the cyanobacterial SufR, which functions as a transcriptional repressor of the sufBCDS operon.
View Article and Find Full Text PDFRING-between-RING (RBR) ubiquitin ligases work with multiple E2 enzymes and function through an E3-ubiquitin thioester intermediate. The RBR module comprises three domains, RING1, IBR and RING2 that collaborate to transfer ubiquitin from the E2~Ub conjugate, recognised by RING1, onto a catalytic cysteine in RING2 and finally onto the substrate in a multi-step reaction. Recent studies have shown that RING1 domains bind E2~Ub conjugates in an open conformation to supress ubiquitin transfer onto lysine residues and promote formation of the E3 thioester intermediate.
View Article and Find Full Text PDFProtein aggregation is under intense scrutiny because of its role in human disease. Although increasing evidence indicates that protein native states are highly protected against aggregation, the specific protection mechanisms are poorly understood. Insight into such mechanisms can be gained through study of the relatively few proteins that aggregate under native conditions.
View Article and Find Full Text PDFJoseph-Machado is an incurable neurodegenerative disease caused by toxic aggregation of ataxin-3, a ubiquitin-specific cysteine protease, involved in the ubiquitin-proteasome pathway and known to bind poly-ubiquitin chains of four or more subunits. The enzymatic site resides in the N-terminal josephin domain of ataxin-3. We have characterized the ubiquitin-binding properties of josephin and showed that, unexpectedly, josephin contains two contiguous but distinct ubiquitin-binding sites.
View Article and Find Full Text PDFThe accumulation of beta-sheet-rich amyloid fibrils or aggregates is a complex, multistep process that is associated with cellular toxicity in a number of human protein misfolding disorders, including Parkinson's and Alzheimer's diseases. It involves the formation of various transient and intransient, on- and off-pathway aggregate species, whose structure, size and cellular toxicity are largely unclear. Here we demonstrate redirection of amyloid fibril formation through the action of a small molecule, resulting in off-pathway, highly stable oligomers.
View Article and Find Full Text PDF