Publications by authors named "Masignani V"

Identification of a toxic agent that—like a sniper—would be capable of targeting pathogenic bacteria and effectively discriminating between “good” and “evil” cells has long been the holy grail of drug discovery. The theory of magic bullet, first pioneered by Paul Ehrlich in the early 1900, has represented since then a “ in immunological research against infectious diseases. Salvarsan, the first arsenic-based drug against syphilis, was the first example showing that this concept was in fact a realistic goal.

View Article and Find Full Text PDF

Neisserial adhesin A (NadA) is a meningococcal surface protein included as recombinant antigen in 4CMenB, a protein-based vaccine able to induce protective immune responses against serogroup B (MenB). Although NadA is involved in the adhesion/invasion of epithelial cells and human myeloid cells, its function in meningococcal physiology is still poorly understood. To clarify the role played by NadA in the host-pathogen interaction, we sought to identify its cellular receptors.

View Article and Find Full Text PDF

Predictions of vaccine efficacy against Neisseria meningitidis serogroup B (NmB) disease are hindered by antigenic variability, limiting the representativeness of individual NmB isolates. A qualitative human serum bactericidal assay using endogenous complements of individual subjects (enc-hSBA) enables large panels of NmB isolates to be tested. A 110-isolate panel was randomly selected from 442 invasive NmB isolates from United States cases reported to the Centers for Disease Control (CDC) from 2000 to 2008.

View Article and Find Full Text PDF

Invasive meningococcal disease can cause fatal sepsis and meningitis and is a global health threat. Factor H binding protein (fHbp) is a protective antigen included in the two currently available vaccines against serogroup B meningococcus (MenB). FHbp is a remarkably variable surface-exposed meningococcal virulence factor with over 1300 different amino acid sequences identified so far.

View Article and Find Full Text PDF

Serogroup B meningococcus (MenB) is a leading cause of meningitis and sepsis across the world and vaccination is the most effective way to protect against this disease. 4CMenB is a multi-component vaccine against MenB, which is now licensed for use in subjects >2 months of age in several countries. In this study, we describe the development and use of an ad hoc protein microarray to study the immune response induced by the three major 4CMenB antigenic components (fHbp, NHBA and NadA) in individual sera from vaccinated infants, adolescents and adults.

View Article and Find Full Text PDF

Neisseria meningitidis serogroup B (MenB) is the leading cause of meningococcal meningitis and sepsis in industrialized countries, with the highest incidence in infants and adolescents. Two recombinant protein vaccines that protect against MenB are now available (i.e.

View Article and Find Full Text PDF

The 4 component meningococcus B vaccine (4CMenB) vaccine is the first vaccine containing recombinant proteins licensed for the prevention of invasive meningococcal disease caused by meningococcal serogroup B strains. 4CMenB contains 3 main recombinant proteins, including the factor H binding protein (fHbp), a lipoprotein able to bind the human factor H. To date, over 1000 aa sequences of fHbp have been identified, and they can be divided into variant groups 1, 2, and 3, which are usually not crossprotective.

View Article and Find Full Text PDF

Monoclonal antibody (mAb) cooperativity is a phenomenon triggered when mAbs couples promote increased bactericidal killing compared to individual partners. Cooperativity has been deeply investigated among mAbs elicited by factor H-binding protein (fHbp), a surface-exposed lipoprotein and one of the key antigens included in both serogroup B meningococcus vaccine Bexsero and Trumenba. Here we report the structural and functional characterization of two cooperative mAbs pairs isolated from Bexsero vaccines.

View Article and Find Full Text PDF

The discovery of vaccine antigens through whole genome sequencing (WGS) contrasts with the classical hypothesis-driven laboratory-based analysis of microbes to identify components to elicit protective immunity. This radical change in scientific direction and action in vaccine research is captured in the term . The complete genome sequence of an isolate of serogroup B (MenB) was systematically analyzed to identify proteins predicted to be secreted or exported to the outer membrane.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is an opportunistic pathogen that causes nosocomial infections most commonly in immunocompromised, cystic fibrosis (CF) and burns patients. The pilin and Pseudomonas lectins 1 (PA-IL) and 2 (PA-IIL) are known glycan-binding proteins of P. aeruginosa that are involved in adherence to host cells, particularly CF host airways.

View Article and Find Full Text PDF

High incidence, severity and increasing antibiotic resistance characterize infections, highlighting the need for new therapeutic options. Vaccination strategies to prevent or limit infections represent a rational approach to positively impact the clinical outcome of risk patients; nevertheless this bacterium remains a challenging vaccine target. To identify novel vaccine candidates, we started from the genome sequence analysis of the reference strain PAO1 exploring the reverse vaccinology approach integrated with additional bioinformatic tools.

View Article and Find Full Text PDF

Introduction: Neisseria meningitidis serogroup B (MenB) is the most common cause of bacterial meningitis in many industrialized countries and occurs at any age. The highest incidence is in infants aged <1 year, followed by children and adolescents. Four-component MenB vaccine (4CMenB, Bexsero) is the only MenB vaccine authorized for use in all age-groups.

View Article and Find Full Text PDF

4CMenB is the first broad coverage vaccine for the prevention of invasive meningococcal disease caused by serogroup B strains. To gain a comprehensive picture of the antibody response induced upon 4CMenB vaccination and to obtain relevant translational information directly from human studies, we have isolated a panel of human monoclonal antibodies from adult vaccinees. Based on the Ig-gene sequence of the variable region, 37 antigen-specific monoclonal antibodies were identified and produced as recombinant Fab fragments, and a subset also produced as full length recombinant IgG1 and functionally characterized.

View Article and Find Full Text PDF

Streptococcus pneumoniae is a leading cause of morbidity and mortality globally. The Pilus-1 proteins, RrgA, RrgB and RrgC of S. pneumoniae have been previously assessed for their role in infection, invasive disease and as possible vaccine candidates.

View Article and Find Full Text PDF

The successful development of two broadly protective vaccines targeting Neisseria meningitidis serogroup B (MenB); 4CMenB and rLP2086, is the most significant recent advance in meningococcal disease prevention. Areas covered: Here we review the principles underlying the development of each vaccine and the novel methods used to estimate vaccine coverage. We update clinical and post-licensure experience with 4CMenB and rLP2086.

View Article and Find Full Text PDF

Neisserial Heparin Binding Antigen (NHBA) is a surface-exposed lipoprotein ubiquitously expressed by Neisseria meningitidis strains and an antigen of the Bexsero® vaccine. NHBA binds heparin through a conserved Arg-rich region that is the target of two proteases, the meningococcal NalP and human lactoferrin (hLf). In this work, in vitro studies showed that recombinant NHBA protein was able to bind epithelial cells and mutations of the Arg-rich tract abrogated this binding.

View Article and Find Full Text PDF

We have recently described a method, named PROFILER, for the identification of antigenic regions preferentially targeted by polyclonal antibody responses after vaccination. To test the ability of the technique to provide insights into the functional properties of monoclonal antibody (mAb) epitopes, we used here a well-characterized epitope of meningococcal factor H binding protein (fHbp), which is recognized by mAb 12C1. An fHbp library, engineered on a lambda phage vector enabling surface expression of polypeptides of widely different length, was subjected to massive parallel sequencing of the phage inserts after affinity selection with the 12C1 mAb.

View Article and Find Full Text PDF

We explore here the potential of a newly described technology, which is named PROFILER and is based on next generation sequencing of gene-specific lambda phage-displayed libraries, to rapidly and accurately map monoclonal antibody (mAb) epitopes. For this purpose, we used a novel mAb (designated 31E10/E7) directed against Neisserial Heparin-Binding Antigen (NHBA), a component of the anti-group B meningococcus Bexsero® vaccine. An NHBA phage-displayed library was affinity-selected with mAb 31E10/E7, followed by massive sequencing of the inserts present in antibody-selected phage pools.

View Article and Find Full Text PDF

Glycoconjugate vaccines are made of carbohydrate antigens covalently bound to a carrier protein to enhance their immunogenicity. Among the different carrier proteins tested in preclinical and clinical studies, five have been used so far for licensed vaccines: Diphtheria and Tetanus toxoids, the non-toxic mutant of diphtheria toxin CRM197, the outer membrane protein complex of Neisseria meningitidis serogroup B and the Protein D derived from non-typeable Haemophilus influenzae. Availability of novel carriers might help to overcome immune interference in multi-valent vaccines containing several polysaccharide-conjugate antigens, and also to develop vaccines which target both protein as well saccharide epitopes of the same pathogen.

View Article and Find Full Text PDF

During bacterial pathogenesis extensive contacts between the human and the bacterial extracellular proteomes take place. The identification of novel host-pathogen interactions by standard methods using a case-by-case approach is laborious and time consuming. To overcome this limitation, we took advantage of large libraries of human and bacterial recombinant proteins.

View Article and Find Full Text PDF

There is a strong need for rapid and reliable epitope mapping methods that can keep pace with the isolation of increasingly larger numbers of mAbs. We describe here the identification of a conformational epitope using Phage-based Representation OF ImmunoLigand Epitope Repertoire (PROFILER), a recently developed high-throughput method based on deep sequencing of antigen-specific lambda phage-displayed libraries. A novel bactericidal monoclonal antibody (mAb 9F11) raised against Neisseria meningitidis adhesin A (NadA), an important component of the Bexsero(®) anti-meningococcal vaccine, was used to evaluate the technique in comparison with other epitope mapping methods.

View Article and Find Full Text PDF

Factor H binding protein (fHbp) is a lipoprotein of Neisseria meningitidis important for the survival of the bacterium in human blood and a component of two recently licensed vaccines against serogroup B meningococcus (MenB). Based on 866 different amino acid sequences this protein is divided into three variants or two families. Quantification of the protein is done by immunoassays such as ELISA or FACS that are susceptible to the sequence variation and expression level of the protein.

View Article and Find Full Text PDF

The adhesion of Streptococcus pneumoniae is a key step during colonization of human respiratory tract mucosae. Here we demonstrate that pneumococcal type I pilus significantly increases the adhesiveness of poorly adhering highly capsulated strains in vitro. Interestingly, preincubation of bacteria with antibodies against the major pilus backbone subunit (RrgB) or the adhesin component (RrgA) impaired pneumococcal association to human epithelial cells.

View Article and Find Full Text PDF

Neisseria adhesin A (NadA) is one of the antigens of Bexsero, the recently licensed multicomponent vaccine against serogroup B Neisseria meningitidis (MenB). NadA belongs to the class of oligomeric coiled-coil adhesins and is able to mediate adhesion and invasion of human epithelial cells. As a vaccine antigen, NadA has been shown to induce high levels of bactericidal antibodies; however, the domains important for protective response are still unknown.

View Article and Find Full Text PDF