IEEE/ACM Trans Comput Biol Bioinform
April 2023
Finding the causal relation between a gene and a disease using experimental approaches is a time-consuming and expensive task. However, computational approaches are cost-efficient methods for identifying candidate genes. This article proposes a new heterogeneous biological network embedding approach, named NetEM, to identify disease-associated genes.
View Article and Find Full Text PDFThe entities of real-world networks are connected via different types of connections (i.e., layers).
View Article and Find Full Text PDFNetworks are invaluable tools to study real biological, social and technological complex systems in which connected elements form a purposeful phenomenon. A higher resolution image of these systems shows that the connection types do not confine to one but to a variety of types. Multiplex networks encode this complexity with a set of nodes which are connected in different layers via different types of links.
View Article and Find Full Text PDFPerturbation in the normal function of the cell signaling pathways often leads to diseases. One of the factors that help understand the mechanism of diseases is the precise identification and investigation of perturbed signaling pathways. Pathway analysis methods have been developed as their purpose is to identify perturbed signaling pathways in given conditions.
View Article and Find Full Text PDFBMC Bioinformatics
February 2019
Background: Accurate identification of perturbed signaling pathways based on differentially expressed genes between sample groups is one of the key factors in the understanding of diseases and druggable targets. Most pathway analysis methods prioritize impacted signaling pathways by incorporating pathway topology using simple graph-based models. Despite their relative success, these models are limited in describing all types of dependencies and interactions that exist in biological pathways.
View Article and Find Full Text PDFProtein complexes play a dominant role in cellular organization and function. Prediction of protein complexes from the network of physical interactions between proteins (PPI networks) has thus become one of the important research areas. Recently, many computational approaches have been developed to identify these complexes.
View Article and Find Full Text PDFJ Bioinform Comput Biol
August 2014
Protein-protein interactions (PPIs) are important for understanding the cellular mechanisms of biological functions, but the reliability of PPIs extracted by high-throughput assays is known to be low. To address this, many current methods use multiple evidence from different sources of information to compute reliability scores for such PPIs. However, they often combine the evidence without taking into account the uncertainty of the evidence values, potential dependencies between the information sources used and missing values from some information sources.
View Article and Find Full Text PDFGraph clustering algorithms are widely used in the analysis of biological networks. Extracting functional modules in protein-protein interaction (PPI) networks is one such use. Most clustering algorithms whose focuses are on finding functional modules try either to find a clique like sub networks or to grow clusters starting from vertices with high degrees as seeds.
View Article and Find Full Text PDF