Publications by authors named "Masayuki Tobo"

Protein homeostasis (proteostasis) is crucial for the maintenance of cellular homeostasis. Impairment of proteostasis activates proteotoxic and unfolded protein response pathways to resolve cellular stress or induce apoptosis in damaged cells. However, the responses of individual tissues to proteotoxic stress and evoking cell death program have not been extensively explored in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • Iron metabolism plays a significant role in the development of obesity, particularly in how it regulates the differentiation of fat cells (adipocytes).
  • The study reveals that iron is crucial during the early stages of adipocyte differentiation, as its deficiency impairs the process by affecting the epigenetic marks of key genes involved in this differentiation, including Pparg.
  • Key enzymes that demethylate DNA and histones, such as Jumonji Domain-Containing 1A and Ten-Eleven Translocation 2, are identified as important for iron-dependent adipocyte differentiation, highlighting the complex relationship between iron availability and gene expression in fat cell development.
View Article and Find Full Text PDF

Extracellular acidification in the brain has been observed in ischemia; however, the physiological and pathophysiological implications of the pH reduction remain largely unknown. Here, we analyzed the roles of proton-sensing G protein-coupled receptors, including T-cell death-associated gene 8 (TDAG8), ovarian cancer G protein-coupled receptor 1 (OGR1), and G protein-coupled receptor 4 (GPR4) in a mouse ischemia reperfusion model. Cerebral infarction and dysfunctional behavior with transient middle cerebral artery occlusion (tMCAO) and subsequent reperfusion were exacerbated by the deficiency of TDAG8, whereas no significant effect was observed with the deficiency of OGR1 or GPR4.

View Article and Find Full Text PDF
Article Synopsis
  • Acute lung injury involves neutrophils infiltrating the lungs, leading to impaired lung function, particularly in response to lipopolysaccharide (LPS) exposure.
  • The study found that LPS treatment increases the expression of TDAG8 in the lungs and resident macrophages, which in turn influences neutrophil accumulation and inflammation.
  • In mice lacking TDAG8, there was increased neutrophil accumulation and lung damage, indicating that TDAG8 acts as a negative regulator of lung inflammation by inhibiting the production of certain inflammatory chemokines.
View Article and Find Full Text PDF

Although blood pH is maintained in a narrow range of around pH 7.4 in living organisms, inflammatory loci are characterized by acidic conditions. Mast cells tend to reside close to the surface of the body in areas such as the mucosa and skin where they may be exposed to exogenous acids, and they play an important role in immune responses.

View Article and Find Full Text PDF
Article Synopsis
  • GPR4 is a receptor that senses pH levels and is linked to various signaling pathways; recent studies have identified imidazopyridine compounds as modulators that can affect GPR4's function.
  • Inhibition of SRE-driven transcriptional activity related to acidic pH was observed in cells expressing GPR4, but only when treated with these imidazopyridine compounds.
  • Compared to psychosine, which inhibits proton-sensing GPCRs by targeting specific histidine residues, imidazopyridine compounds demonstrated a unique mode of action on GPR4, showing potential as tools for studying its biological functions.
View Article and Find Full Text PDF

The elucidation of the functional mechanisms of extracellular acidification stimulating intracellular signaling pathway is of great importance for developing new targets of treatment for solid tumors, and inflammatory disorders characterized by extracellular acidification. In the present study, we focus on the regulation of extracellular acidification on intracellular signaling pathways in mouse embryo fibroblasts (MEFs). We found extracellular acidification was at least partly involved in stimulating p38MAPK pathway through PTX-sensitive behavior to enhance cell migration in the presence or absence of platelet-derived growth factor (PDGF).

View Article and Find Full Text PDF

Neuronal NO synthase (nNOS)-mediated cGMP accumulation has been shown to affect a variety of neuronal cell activities, regardless of whether they are detrimental or beneficial, depending on the amount of their levels, under the physiological and pathological situations. In the present study, we examined the role of proton-sensing G protein-coupled receptors (GPCRs), which have been identified as new pH sensors, in the acidic pH-induced nNOS/cGMP activity in N1E-115 neuronal cells. In this cell line, ovarian cancer G protein-coupled receptor 1 (OGR1) and G protein-coupled receptor 4 (GPR4) mRNAs are expressed.

View Article and Find Full Text PDF

Oxidatively damaged proteins and lipid peroxidation products have been shown to accumulate in the brain of neurodegenerative diseases, such as Alzheimer's disease and multiple sclerosis, and oxidized lipoprotein is considered to be toxic and neurodegenerative. However, the role of lipoprotein and its oxidized form in neurite remodeling has not been well understood. In the present study, we have aimed to clarify whether and, if so, how high-density lipoprotein (HDL) and oxidized HDL (oxHDL) affect neuritogenesis.

View Article and Find Full Text PDF

Interleukin-1β (IL-1β) is released from activated microglia and involved in the neurodegeneration of acute and chronic brain disorders, such as stroke and Alzheimer's disease, in which extracellular acidification has been shown to occur. Here, we examined the extracellular acidic pH regulation of IL-1β production, especially focusing on TDAG8, a major proton-sensing G-protein-coupled receptor, in mouse microglia. Extracellular acidification inhibited lipopolysaccharide -induced IL-1β production, which was associated with the inhibition of IL-1β cytoplasmic precursor and mRNA expression.

View Article and Find Full Text PDF

Ovarian cancer G protein-coupled receptor 1 (OGR1) stimulation by extracellular protons causes the activation of G proteins and subsequent cellular functions. However, the physiological and pathophysiological roles of OGR1 in airway responses remain largely unknown. In the present study, we show that OGR1-deficient mice are resistant to the cardinal features of asthma, including airway eosinophilia, airway hyperresponsiveness (AHR), and goblet cell metaplasia, in association with a remarkable inhibition of Th2 cytokine and IgE production, in an ovalbumin (OVA)-induced asthma model.

View Article and Find Full Text PDF

Ovarian cancer G protein-coupled receptor 1 (OGR1) has been shown as a receptor for protons. In the present study, we aimed to know whether OGR1 plays a role in insulin secretion and, if so, the manner in which it does. To this end, we created OGR1-deficient mice and examined insulin secretion activity in vivo and in vitro.

View Article and Find Full Text PDF

Pancreatic cancer is highly metastatic and has a poor prognosis. However, there is no established treatment for pancreatic cancer. Lysophosphatidic acid (LPA) has been shown to be present in effluents of cancers and involved in migration and proliferation in a variety of cancer cells, including pancreatic cancer cells, in vitro.

View Article and Find Full Text PDF

Dexamethasone (DEX), a potent glucocorticoid, increased the expression of T-cell death associated gene 8 (TDAG8), a proton-sensing G protein-coupled receptor, which is associated with the enhancement of acidic pH-induced cAMP accumulation, in peritoneal macrophages. We explored the role of increased TDAG8 expression in the anti-inflammatory actions of DEX. The treatment of macrophages with either DEX or acidic pH induced the cell death of macrophages; however, the cell death was not affected by TDAG8 deficiency.

View Article and Find Full Text PDF

Atherosclerosis is a chronic inflammation disease characterized by acidic micromilieu and the accumulation of numerous bioactive lipid mediators, such as lysophosphatidic acid (LPA) and prostaglandins, in the atherosclerotic lesion. Chronic acidification induced various effects on vascular smooth muscle cells, but the molecular mechanisms underlying these effects remain unknown. In this study, we examine the role of proton-sensing ovarian cancer G protein-coupled receptor 1 (OGR1) in extracellular acidification-induced regulation of cyclooxygenase (COX)-2 induction, PGI(2) production, MAPK phosphatase (MKP)-1 expression, and plasminogen activator inhibitor (PAI)-1 expression and proliferation in human aortic smooth muscle cells (AoSMCs).

View Article and Find Full Text PDF

GPR4, previously proposed as the receptor for sphingosylphosphorylcholine, has recently been identified as the proton-sensing G-protein-coupled receptor coupling to multiple intracellular signaling pathways, including the G(s)-protein/cAMP, G(12/13)-protein/Rho, and G(q)-protein/phospholipase C pathways. In the present study, we examined whether extracellularly located histidine residues of GPR4 sense extracellular protons and, if so, whether a certain histidine residue is critical for coupling to the single or multiple signaling pathway(s). We found that the mutation of histidine residue at 79, 165, or 269 from the N-terminal of GPR4 to phenylalanine shifted the half-maximal effective concentration (EC(50)) of proton-induced signaling activities to the right, including cAMP accumulation, SRE promoter activity reflecting Rho activity, and NFAT promoter activity reflecting phospholipase C signaling activity, without an appreciable change in the maximal activities.

View Article and Find Full Text PDF

Low-density lipoprotein (LDL) and lysophosphatidic acid (LPA), one of the lipid components of lipoprotein, induced the DNA synthesis of coronary artery smooth muscle cells (CASMCs). The LDL- and LPA-induced DNA synthesis was markedly inhibited by the LPA receptor antagonist Ki16425, pertussis toxin, small interfering RNAs targeted for LPA1 receptors, and a potent calcineurin inhibitor cyclosporine A. It has been reported that LDL and LPA induced a migration response in a manner sensitive to Ki16425, pertussis toxin, and a LPA1 receptor-specific small interfering RNA.

View Article and Find Full Text PDF

Extracellular acidification inhibited formyl-Met-Leu-Phe- or C5a-induced superoxide anion (O(2)(-)) production in differentiated HL-60 neutrophil-like cells and human neutrophils. A cAMP-increasing agonist, prostaglandin E(1), also inhibited the formyl peptide-induced O(2)(-) production. The inhibitory action on the O(2)(-) production by extracellular acidic pH was associated with cAMP accumulation and partly attenuated by H89, a protein kinase A inhibitor.

View Article and Find Full Text PDF

Extracellular acidification inhibited LPS-induced TNF-alpha protein production, which was associated with an inhibition of TNF-alpha mRNA expression, in mouse peritoneal macrophages. The LPS-induced cytokine production was also inhibited by G(s) protein-coupled receptor agonists prostaglandin E(1) and isoproterenol. Among OGR1 family proton-sensing GTP-binding regulatory protein-coupled receptors, TDAG8, OGR1, and G2A are expressed in the cells.

View Article and Find Full Text PDF

Malignant ascites from pancreatic cancer patients has been reported to stimulate migration of pancreatic cancer cells through lysophosphatidic acid (LPA) and LPA(1) receptors. Indeed, ascites- and LPA-induced migration was inhibited by Ki16425, an LPA(1) and LPA(3) antagonist, in Panc-1 cells. Unexpectedly, however, in the presence of Ki16425, ascites and LPA inhibited cell migration in response to epidermal growth factor (EGF).

View Article and Find Full Text PDF

While inflammatory cytokines are well-recognized critical factors for the induction of cyclooxygenase-2 (COX-2) in activated fibroblast-like synovial cells, the roles of biologically active components other than inflammatory cytokines in synovial fluid remain unknown. Herein, we assessed the role of lysophosphatidic acid (LPA), a pleiotropic lipid mediator, in COX-2 induction using synovial fluid of patients with rheumatoid arthritis (RA) in fibroblast-like RA synovial cells. Synovial fluid from RA patients stimulated COX-2 induction, which was associated with prostaglandin E(2) production, in RA synovial cells.

View Article and Find Full Text PDF
Article Synopsis
  • * In the study, researchers used a human osteoblastic cell line (NHOst) to explore how these cells respond to acidic conditions, focusing on calcium signaling and COX-2 induction.
  • * Findings indicate that the OGR1 receptor and specific intracellular signaling pathways (involving G(q/11), phospholipase C, and protein kinase C) play a key role in mediating the cellular responses to acidification that lead to increased COX-2 and PGE(2) production.
View Article and Find Full Text PDF

GPR4 was initially identified as a receptor for sphingosylphosphorylcholine and lysophosphatidylcholine; however, lipid actions have not always been confirmed. Instead, ligand-independent actions have sometimes been observed in GPR4- and other OGR1 family receptor-expressing cells. Here, we examined the possible involvement of extracellular protons, which have recently been proposed as another ligand for GPR4.

View Article and Find Full Text PDF

The migration of vascular smooth muscle cells (SMCs) is a hallmark of the pathogenesis of atherosclerosis and restenosis after angioplasty. Plasma low-density lipoprotein (LDL), but not high-density lipoprotein (HDL), induced the migration of human coronary artery SMCs (CASMCs). Among bioactive lipids postulated to be present in LDL, lysophosphatidic acid (LPA) appreciably mimicked the LDL action.

View Article and Find Full Text PDF

Ovarian cancer G-protein-coupled receptor 1 (OGR1), previously proposed as a receptor for sphingosylphosphorylcholine (SPC), has recently been identified as a proton-sensing or extracellular pH-responsive G-protein-coupled receptor stimulating inositol phosphate production, reflecting the activation of phospholipase C. In the present study, we found that acidic pH stimulated cAMP accumulation, reflecting the activation of adenylyl cyclase, in addition to inositol phosphate production in OGR1-expressing cells. The cAMP response was hardly affected by the inhibition of phospholipase C.

View Article and Find Full Text PDF