X-ray topography is a powerful method for analyzing crystal defects and strain in crystalline materials non-destructively. However, conventional X-ray topography uses simple X-ray diffraction images, which means depth information on defects and dislocations cannot be obtained. We have therefor developed a novel three-dimensional micro-X-ray topography technique (3D μ-XRT) that combines Bragg-case section topography with focused sheet-shaped X-rays.
View Article and Find Full Text PDFSocial robots have grown increasingly integrated into our daily lives in recent years. Robots can be good social agents who engage with people, such as assistants and counselors, and good partners and companions with whom people can form good relationships. Furthermore, unlike devices such as smart speakers or virtual agents on a screen, robots have physicality, which allows them to observe the actual environment using sensors and respond behaviorally with full-body motions.
View Article and Find Full Text PDFDynamic manipulation of flexible objects such as fabric, which is difficult to modelize, is one of the major challenges in robotics. With the development of deep learning, we are beginning to see results in simulations and some actual robots, but there are still many problems that have not yet been tackled. Humans can move their arms at high speed using their flexible bodies skillfully, and even when the material to be manipulated changes, they can manipulate the material after moving it several times and understanding its characteristics.
View Article and Find Full Text PDFBioinspir Biomim
April 2019
We have been developing a human mimetic musculoskeletal humanoid called Kenshiro, whose design concept is to thoroughly pursue an unprecedented anatomical fidelity to the human musculoskeletal structure. We believe that research on human mimetic musculoskeletal humanoids advances our understanding of humans and expands the applications of humanoids-such as a human body simulator that can quantitatively analyze internal human motion data. This paper describes Kenshiro's musculoskeletal body characteristics, software system, and preliminary experiments explaining the concept of potential application.
View Article and Find Full Text PDFMany systems and mechanisms in the human body are not fully understood, such as the principles of muscle control, the sensory nervous system that connects the brain and the body, learning in the brain, and the human walking motion. To address this knowledge deficit, we propose a human mimetic humanoid with an unprecedented degree of anatomical fidelity to the human musculoskeletal structure. The fundamental concept underlying our design is to consider the human mechanism, which contrasts with the conventional engineering approach used in the design of existing humanoids.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
January 2007
This paper gives an overview of the humanoid robot 'H7', which was developed over several years as an experimental platform for walking, autonomous behaviour and human interaction research at the University of Tokyo. H7 was designed to be a human-sized robot capable of operating autonomously in indoor environments designed for humans. The hardware is relatively simple to operate and conduct research on, particularly with respect to the hierarchical design of its control architecture.
View Article and Find Full Text PDF