Publications by authors named "Masayoshi Yuasa"

To investigate the effect of aging at 580 °C in wet air (humid aging) on the oxygen adsorption on the surface of SnO₂ particles, the electric properties and the sensor response to hydrogen in dry and humid atmospheres for SnO₂ resistive-type gas sensors were evaluated. The electric resistance in dry and wet atmospheres at 350 °C was strongly increased by humid aging. From the results of oxygen partial pressure dependence of the electric resistance, the oxygen adsorption equilibrium constants (₁; for O adsorption, ₂; for O adsorption) were estimated on the basis of the theoretical model of oxygen adsorption.

View Article and Find Full Text PDF

The p-type nanocrystals (NCs) of copper-based chalcogenides, such as CuInSe2 and Cu2ZnSnS4, have attracted increasing attention in photovoltaic applications due to their potential to produce cheap solution-processed solar cells. Herein, we report the synthesis of copper-antimony-sulfide (CAS) NCs with different crystal phases including CuSbS2, Cu3SbS4, and Cu12Sb4S13. In addition, their morphology, crystal phase, and optical properties were characterized using transmission electron microscopy, X-ray diffractometry, UV-vis-near-IR spectroscopy, and photoemission yield spectroscopy.

View Article and Find Full Text PDF

Real-time monitoring of specific gas concentrations with a compact and portable gas sensing device is required to sense potential health risk and danger from toxic gases. For such purposes, we developed an ultrasmall gas sensor device, where a micro sensing film was deposited on a micro heater integrated with electrodes fabricated by the microelectromechanical system (MEMS) technology. The developed device was operated in a pulse-heating mode to significantly reduce the heater power consumption and make the device battery-driven and portable.

View Article and Find Full Text PDF

Pd particles of different nanosizes were loaded on the SnO2 surface by using different Pd precursors for the purpose of investigating the Pd size effect on gas sensing properties in humid atmosphere. One kind of Pd-loaded SnO2 nanoparticle was characterized by smaller Pd particles (2.6 nm) with high dispersion, while another kind was characterized by larger Pd particles (5-10 nm) with low dispersion.

View Article and Find Full Text PDF

Recently, the process by which energy is transferred from photoexcited semiconductor nanocrystals, called quantum dots (QDs), to other semiconductors has attracted much attention and has potential application in solar energy conversion (i.e., QD-sensitized solar cells).

View Article and Find Full Text PDF

The effect of water vapor on Pd-loaded SnO2 sensor was investigated through the oxygen adsorption behavior and sensing properties toward hydrogen and CO under different humidity conditions. On the basis of the theoretical model reported previously, it was found that the mainly adsorbed oxygen species on the SnO2 surface in humid atmosphere was changed by loading Pd, more specifically, for neat SnO2 was O(-), while for 0.7% Pd-SnO2 was O(2-).

View Article and Find Full Text PDF

Gas sensing with nanosized oxide materials is attracting much attention because of its promising capability of detecting various toxic gases at very low concentrations. In this study, using clustered SnO2 nanoparticles formed by controlled particle aggregation, we fabricated highly sensitive gas sensing films to detect large gas molecules such as toluene. A hydrothermal method using stanic acid (SnO2·nH2O) gel as a precursor produced monodispersed SnO2 nanoparticles of ca.

View Article and Find Full Text PDF

Tungsten trioxide (WO3) is one of the important multifunctional materials used for photocatalytic, photoelectrochemical, battery, and gas sensor applications. Nanostructured WO3 holds great potential for enhancing the performance of these applications. Here, we report highly sensitive NO2 sensors using WO3 nanolamellae and their sensitivity improvement by morphology control using SnO2 nanoparticles.

View Article and Find Full Text PDF

In recent years, the recovery of noble metals from waste has become very important because of their scarcity and increasing consumption. In this study, we attempt the photochemical recovery of noble metals from solutions using inorganic-organic hybrid photocatalysts. These catalysts are based on polyoxometalates such as PMo(12)O(40)(3-), SiW(12)O(40)(4-), and γ-SiW(10)O(36)(8-) coupled with a cationic surfactant, dimethyldioctadecylammonium (DODA).

View Article and Find Full Text PDF

A stable sol suspension of Pd-loaded SnO(2) nanocrystals, which is valid for both fundamental studies of semiconductor gas sensor and fabrications of a micro gas sensor, was fabricated by the photochemical deposition of PdCl(4)(2-) onto SnO(2) in an aqueous solution. UV light was irradiated on a mixture of a SnO(2) sol obtained through a hydrothermal treatment of stannic acid gel in the presence of PdCl(4)(2-) and ethanol/water at pH 2. A stable sol suspension of Pd-loaded SnO(2) was successfully obtained by controlling the pH of the above suspension to 10.

View Article and Find Full Text PDF

Our previous study showed the local production of gamma-aminobutyrate (GABA) in hypertrophic-zone chondrocytes of the rat tibial growth plate, an important long bone growth site. The aim of this study was to identify the presence of GABA receptors in growth plate chondrocytes by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Chondrocytes expressed both GABA(A) and GABA(B) receptor subunit mRNAs as well as the corresponding proteins necessary for the assembly of functional receptors.

View Article and Find Full Text PDF