Microbial transglutaminase (MTG) from Streptomyces mobaraensis is widely used in the food and pharmaceutical industries for cross-linking and post-translational modification of proteins. It is believed that its industrial applications could be further broadened by improving its thermostability. In our previous study, we showed that the introduction of structure-based disulfide bonds improved the thermostability of MTG, and we succeeded in obtaining a thermostable mutant, D3C/G283C, with a T (incubation temperature at which 50% of the initial activity remains) 9 °C higher than that of wild-type MTG.
View Article and Find Full Text PDFRecombinant protein production is an essential aspect of biopharmaceutical manufacturing, with serving as a primary host organism. Protein refolding is vital for protein production; however, conventional refolding methods face challenges such as scale-up limitations and difficulties in controlling protein conformational changes on a millisecond scale. In this study, we demonstrate the novel application of flow microreactors (FMR) in controlling protein conformational changes on a millisecond scale, enabling efficient refolding processes and opening up new avenues in the science of FMR technology.
View Article and Find Full Text PDFMicrobial transglutaminase (MTG) has numerous industrial applications in the food and pharmaceutical sectors. Unfortunately, the thermostability of MTG is too low to tolerate the desired conditions used in many of these commercial processes. In a previous study, we used protein engineering to improve the thermostability of MTG.
View Article and Find Full Text PDFIn the present study, we simultaneously incorporated two types of synthetic components into microbial transglutaminase (MTG) from Streptoverticillium mobaraense to enhance the utility of this industrial enzyme. The first amino acid, 3-chloro-l-tyrosine, was incorporated into MTG in response to in-frame UAG codons to substitute for the 15 tyrosine residues separately. The two substitutions at positions 20 and 62 were found to each increase thermostability of the enzyme, while the seven substitutions at positions 24, 34, 75, 146, 171, 217, and 310 exhibited neutral effects.
View Article and Find Full Text PDFBackground: Among other advantages, recombinant antibody-binding fragments (Fabs) hold great clinical and commercial potential, owing to their efficient tissue penetration compared to that of full-length IgGs. Although production of recombinant Fab using microbial expression systems has been reported, yields of active Fab have not been satisfactory. We recently developed the Corynebacterium glutamicum protein expression system (CORYNEX®) and demonstrated improved yield and purity for some applications, although the system has not been applied to Fab production.
View Article and Find Full Text PDFAppl Environ Microbiol
February 2009
The twin-arginine translocation (Tat) pathway in Corynebacterium glutamicum has been described previously. The minimal functional Tat system in C. glutamicum required TatA and TatC but did not require TatB, although this component was required for maximal efficiency of Tat-dependent secretion.
View Article and Find Full Text PDFThe protein glutaminase (PG) secreted by the Gram-negative bacterium Chryseobacterium proteolyticum can deamidate glutaminyl residues in several substrate proteins, including insoluble wheat glutens. This enzyme therefore has potential application in the food industry. We assessed the possibility to produce PG containing a pro-domain in Corynebacterium glutamicum which we have successfully used for production of several kinds of proteins at industrial-scale.
View Article and Find Full Text PDFCompared to those of other gram-positive bacteria, the genetic structure of the Corynebacterium glutamicum Tat system is unique in that it contains the tatE gene in addition to tatA, tatB, and tatC. The tatE homologue has been detected only in the genomes of gram-negative enterobacteria. To assess the function of the C.
View Article and Find Full Text PDFThe prolyl peptidase that removes the tetra-peptide of pro-transglutaminase was purified from Streptomyces mobaraensis mycelia. The substrate specificity of the enzyme using synthetic peptide substrates showed proline-specific activity with not only tripeptidyl peptidase activity, but also tetrapeptidyl peptidase activity. However, the enzyme had no other exo- and endo-activities.
View Article and Find Full Text PDFWe previously observed secretion of native-type Streptomyces mobaraensis transglutaminase (MTGase) in Corynebacterium glutamicum by co-expressing the subtilisin-like protease SAM-P45 from S. albogriseolus which processes the pro-region. In the present study, we have used a chimeric pro-region consisting of S.
View Article and Find Full Text PDFWe previously observed secretion of active-form transglutaminase in Corynebacterium glutamicum by coexpressing the subtilisin-like protease SAM-P45 from Streptomyces albogriseolus to process the prodomain. However, the N-terminal amino acid sequence of the transglutaminase differed from that of the native Streptoverticillium mobaraense enzyme. In the present work we have used site-directed mutagenesis to generate an optimal SAM-P45 cleavage site in the C-terminal region of the prodomain.
View Article and Find Full Text PDFThe transglutaminase secreted by Streptoverticillium mobaraense is a useful enzyme in the food industry. A fragment of transglutaminase was secreted by Corynebacterium glutamicum when it was coupled on a plasmid to the promoter and signal peptide of a cell surface protein from C. glutamicum.
View Article and Find Full Text PDF