Overcoming multidrug resistance (MDR) of cancer cells can be accomplished using drug delivery systems in large-molecular-weight ATP-binding cassette transporters before entry into phagolysosomes and by particle-cell-surface interactions. However, these hypotheses do not address the intratumoral heterogeneity in cancer. Anti-MDR must be related to alterations of drug targets, expression of detoxification, as well as altered proliferation.
View Article and Find Full Text PDFThe resistance of cancer cells to chemotherapeutic drugs (MDR) is a major problem to be solved. A supramolecular DEAE-dextran-MMA copolymer (DDMC)/paclitaxel (PTX) complex was obtained by using PTX as the guest and DDMC as the host having 50-300 nm in diameter. The drug resistance of B16F10 melanoma cells to paclitaxel was observed, but there is no drug resistance of melanoma cells to the DDMC/PTX complex in vitro.
View Article and Find Full Text PDFThe anticancer efficacy of a supramolecular complex that was used as an artificial enzyme against multi-drug-resistant cancer cells was confirmed. A complex of diethylaminoethyl-dextran-methacrylic acid methylester copolymer (DDMC)/paclitaxel (PTX), obtained with PTX as the guest and DDMC as the host, formed a nanoparticle 50-300 nm in size. This complex is considered to be useful as a drug delivery system (DDS) for anticancer compounds since it formed a stable polymeric micelle in water.
View Article and Find Full Text PDFComparative investigations were carried out regarding the efficiency of introduction of exogenous genes into cultured cells using a cationic polysaccharide DEAE-dextran-MMA (methyl methacrylate ester) graft copolymer (2-diethylaminoethyl-dextran-methyl methacrylate graft copolymer; DDMC) as a nonviral carrier for gene introduction. The results confirmed that the gene introduction efficiency was improved with DDMC relative to DEAE-dextran. Comparative investigations were carried out using various concentrations of DDMC and DNA in the introduction of DNA encoding luciferase (pGL3 control vector; Promega) into COS-7 cells derived from African green monkey kidney cells.
View Article and Find Full Text PDF