A novel series of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivatives were synthesized and (S)-2-[(2E,4E)-hexadienoyl]-7-(2-{5-methyl-2-[(1E)-5-methylhexen-1-yl]oxazol-4-yl}ethoxy)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (14i) was identified as a potent human peroxisome proliferator-activated receptor γ (PPARγ) selective agonist (EC(50)=0.03 μM) and human protein-tyrosine phosphatase 1B (PTP-1B) inhibitor (IC(50)=1.18 μM).
View Article and Find Full Text PDFNovel 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivatives were synthesized and (S)-7-(2-{2-[(E)-2-cyclopentylvinyl]-5-methyloxazol-4-yl}ethoxy)-2-[(2E,4E)-hexadienoyl]-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (14c) was identified as a peroxisome proliferator-activated receptor (PPAR) α/γ dual agonist. The transactivation activity of 14c was comparable to that of rosiglitazone in human PPARγ (EC50=0.14 µM) and was much higher than in human PPARα (EC50=0.
View Article and Find Full Text PDF2-Acyl-tetrahydroisoquinoline-3-carboxylic acid derivatives were synthesized and biologically evaluated. (S)-2-(2,4-Hexadienoyl)-7-[2-(5-methyl-2-phenyloxazol-4-yl)ethoxy]-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (14) showed peroxisome proliferator-activated receptor γ (PPARγ) and PPARα agonist activities and protein-tyrosine phosphatase 1B (PTP-1B) inhibitory activities. PPARγ agonist activity of 14 was comparable to that of rosiglitazone, and PTP-1B inhibitory activity was about 10-fold weaker than that of ertiprotafib, a PTP-1B inhibitor.
View Article and Find Full Text PDFTo improve the oral absorption of meropenem (MEPM), we synthesized and evaluated a series of its double-promoiety prodrugs, in which lipophilic promoieties were introduced into carboxyl and pyrrolidinyl groups. Among these prodrugs, pivaloyloxymethyl (1R,5S,6S)-2-[(3S,5S)-5-(N,N-dimethylcarbamoyl)-1-(isobutyryloxymethyloxycarbonyl)pyrrolidin-3-ylthio]-6-[(1R)-1-hydroxyethyl]-1-methylcarbapen-2-em-3-carboxylate (4) and 1-ethylpropyloxycarbonyloxymethyl (1R,5S,6S)-2-[(3S,5S)-5-(N,N-dimethylcarbamoyl)-1-(isobutyryloxymethyloxycarbonyl)pyrrolidin-3-ylthio]-6-[(1R)-1-hydroxyethyl]-1-methylcarbapen-2-em-3-carboxylate (8) were chosen for further evaluation. Compounds 4 and 8 were well absorbed after oral administration to rats and beagles (bioavailability 18.
View Article and Find Full Text PDFTo find a novel acyl-CoA: cholesterol acyltransferase (ACAT) inhibitor with anti-lipid peroxidative activity, a series of tetrahydroisoquinoline derivatives were synthesized and evaluated. A compound with a N-(4-hydroxy-2,3,5-trimethylphenyl)carbamoyl moiety at the 3-position and an octanoyl moiety at the 2-position (7) was demonstrated to show anti-foam cell formation activity stronger than and anti-lipid peroxidative activity comparable to those of Pactimibe, while it was hardly absorbed orally. To increase its bioavailability, the acyl chain at the 2-position was shortened and various polar or basic moieties were introduced at the 7-position of 7.
View Article and Find Full Text PDFTo find a novel acyl-CoA: cholesterol acyltransferase inhibitor, a series of sulfamide derivatives were synthesized and evaluated. Compound 1d, in which carboxymethyl moiety at the 5-position of Pactimibe was replaced by a sulfamoylamino group, showed 150-fold more potent anti-foam cell formation activity (IC(50): 0.02 microM), 1.
View Article and Find Full Text PDFA novel series of indoline-based acyl-CoA: cholesterol acyltransferase (ACAT) inhibitors with a methanesulfonamide group at the 5-position were synthesized and their lipophilicity and biological activities were evaluated. Hepatic ACAT inhibitory and anti-foam cell formation activity increased dependent on lipophilicity of derivatives with various alkyl chains at the 1-position. The logD(7.
View Article and Find Full Text PDFA novel series of 1-alkyl-7-amido-indoline-based anti-oxidative acyl-CoA: cholesterol acyltransferase (ACAT) inhibitors have been reported and are expected to lower plasma cholesterol levels due to the inhibition of intestinal and hepatic ACAT, and to inhibit cholesterol accumulation in macrophages due to the inhibition of low density lipoprotein (LDL) oxidation. In the present study, relationships between lipophilicity and biological activities were examined in 13 derivatives. Lipophilicity (logP) increased and water solubility decreased with dependence on the number of carbons in the 1-alkyl chain.
View Article and Find Full Text PDFA series of novel indoline derivatives with an ionizable moiety were synthesized to find a bioavailable acyl-CoA:cholesterol acyltransferase (ACAT) inhibitor with antiperoxidative activity. [7-(2,2-Dimethylpropanamido)-4,6-dimethyl-1-octylindolin-5-yl]acetic acid hemisulfate (2, pactimibe sulfate) with low lipophilicity and high water solubility showed good oral absorption and inhibitory activity against foam cell formation in THP-1 cells exposed to acetyl-LDL after differentiation (IC50: 0.3 microM) and an antiperoxidative effect in LDL of hypercholesterolemic rabbits (IC50: 1.
View Article and Find Full Text PDFA novel series of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivatives were synthesized and biologically evaluated. (S)-2-Benzyl-7-[2-(5-methyl-2-phenyloxazol-4-yl)ethoxy]-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (10, KY-021) was identified as a novel peroxisome proliferators-activated receptor (PPAR) gamma agonist, which showed potent activity in human PPAR gamma (EC50=11.8 nM).
View Article and Find Full Text PDF