Publications by authors named "Masaya Minoda"

2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN) is a minor component of sialic acids detected in vertebrates, such as human cancer cells, rat liver, and fish tissues. Although the enzyme activity of KDN-cleaving sialidase (KDN-sialidase) has been detected in rainbow trout, the gene responsible for its expression has not been identified in vertebrates. We evaluated sialidases in human and various fish for their KDN-cleaving activity using an artificial substrate, methylumbelliferyl-KDN (MU-KDN).

View Article and Find Full Text PDF

Background/aim: Second mitochondria-derived activator of caspase (Smac) is a proapoptogenic mitochondrial protein that antagonizes inhibitors of apoptosis proteins (IAPs), resulting in induction of apoptosis. In the present study we investigated the effects of a Smac mimetic in combination with doxorubicin against osteosarcoma.

Materials And Methods: In vitro effects of the combination of a Smac mimetic AT-406 and doxorubicin on cell proliferation and apoptosis in osteosarcoma cell lines were examined using cell proliferation assays, flow cytometry, and immunoblot analyses.

View Article and Find Full Text PDF

Carbon dioxide (CO2) therapy can be applied to treat a variety of disorders. We previously found that transcutaneous application of CO2 with a hydrogel decreased the tumor volume of several types of tumors and induced apoptosis via the mitochondrial pathway. However, only one condition of treatment intensity has been tested.

View Article and Find Full Text PDF

The AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) modulates cellular energy metabolism, and promotes mitochondrial proliferation and apoptosis. Previous studies have shown that AICAR has anticancer effects in various cancers, however the roles of AMPK and/or the effects of AICAR on osteosarcoma have not been reported. In the present study, we evaluated the effects of AICAR on tumor growth and mitochondrial apoptosis in human osteosarcoma both in vitro and in vivo.

View Article and Find Full Text PDF

Survivin is a member of the inhibitor of apoptosis family, which is known to inhibit mitochondrial apoptosis. Survivin is highly expressed in cancers and plays an important role in cancer cell survival, and increased survivin expression is an unfavorable prognostic marker in cancer patients. YM155, a novel small-molecule survivin suppressant, selectively suppresses survivin expression, resulting in the induction of apoptosis in various malignancies.

View Article and Find Full Text PDF

Squamous cell carcinoma (SCC) is the main histological type of oral cancer. Its growth rate and incidence of metastasis to regional lymph nodes is influenced by various factors, including hypoxic conditions. We have previously reported that transcutaneous CO2 induces mitochondrial apoptosis and decreases lung metastasis by reoxygenating sarcoma cells.

View Article and Find Full Text PDF

Sarcomas are relatively resistant because of hypoxia. We previously demonstrated that the transcutaneous CO(2) therapy reduced hypoxic conditions in human malignant fibrous histiocytoma (MFH). Therefore, we hypothesized that transcutaneous CO(2) therapy could enhance the antitumor effect of radiation therapy in human MFH.

View Article and Find Full Text PDF

A number of studies have reported that decreased mitochondrial numbers are linked with neoplastic transformation and/or tumor progression, including resistance to apoptosis. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) is a multi-functional transcriptional coactivator that regulates the activities of multiple nuclear receptors and transcriptional factors involved in mitochondrial biogenesis. In this study, we observed that the number of mitochondria in sarcoma tissues, such as osteosarcoma and malignant fibrous histiocytoma, is significantly lower than that in normal muscle tissue or benign tumors, and that increasing the number of mitochondria by PGC-1α overexpression induces mitochondrial apoptosis in human sarcoma cell lines.

View Article and Find Full Text PDF

Decoy receptor 3 (DcR3) is a soluble secreted protein that belongs to the tumor necrosis factor receptor (TNFR) superfamily. DcR3 inhibits the Fas ligand (FasL)/Fas apoptotic pathway by binding to FasL, competitively with Fas receptor. Previous studies have reported that overexpression of DcR3 has been detected in various human malignancies and that DcR3 functions as a 'decoy' for FasL to inhibit FasL-induced apoptosis.

View Article and Find Full Text PDF

Osteosarcoma is the most common primary solid malignant bone tumor. Despite substantial improvements in surgery and chemotherapy, metastasis remains a major cause of fatal outcomes, and the molecular mechanisms of metastasis are still poorly understood. Hypoxia, which is common in malignant tumors including osteosarcoma, increases expressions of hypoxia inducible factor (HIF)-1α, matrix metalloproteinase (MMP)-2 and MMP-9, and can induce invasiveness.

View Article and Find Full Text PDF

Mitochondria play an essential role in cellular energy metabolism and apoptosis. Previous studies have demonstrated that decreased mitochondrial biogenesis is associated with cancer progression. In mitochondrial biogenesis, peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) regulates the activities of multiple nuclear receptors and transcription factors involved in mitochondrial proliferation.

View Article and Find Full Text PDF