An advanced understanding of ultrafast coherent electron dynamics is necessary for the application of submicrometre devices under a non-equilibrium drive to quantum technology, including on-demand single-electron sources, electron quantum optics, qubit control, quantum sensing and quantum metrology. Although electron dynamics along an extended channel has been studied extensively, it is hard to capture the electron motion inside submicrometre devices. The frequency of the internal, coherent dynamics is typically higher than 100 GHz, beyond the state-of-the-art experimental bandwidth of less than 10 GHz (refs.
View Article and Find Full Text PDFA gigahertz single-electron (SE) pump with a semiconductor charge island is promising for a future quantum current standard. However, high-accuracy current in the nanoampere regime is still difficult to achieve because the performance of SE pumps tends to degrade significantly at frequencies exceeding 1 GHz. Here, we demonstrate robust SE pumping via a single-trap level in silicon up to 7.
View Article and Find Full Text PDFControl of the local magnetic fields desirable for spintronics and quantum information technology is not well developed. Existing methods produce either moderately small local fields or one field orientation. We present designs of patterned magnetic elements that produce remanent fields of 50 mT (potentially 200 mT) confined to chosen, submicrometer regions in directions perpendicular to an external initializing field.
View Article and Find Full Text PDF