Recently, ionic liquids (ILs) have attracted attention as prospective electrolytes for Li-ion batteries, with safe performance. Herein, the dynamics of the IL at the electrochemical interface, which is the key to the electrochemical reaction, was monitored using attenuated total reflectance far- and deep-ultraviolet (ATR-FUV-DUV) spectroscopy. An original measurement system, which combined an ATR-FUV-DUV spectrometer with a Kretschmann type (fully metal-coated prism) electrochemical setup, was assembled.
View Article and Find Full Text PDFThe interface of organic semiconductor films is of particular importance with respect to various electrochemical devices such as transistors and solar cells. In this study, we developed a new spectroscopic system, namely electrochemical attenuated total reflectance ultraviolet (EC-ATR-UV) spectroscopy, which can access the interfacial area. Ionic liquid-gated organic field-effect transistors (IL-gated OFETs) were successfully fabricated on the ATR prism.
View Article and Find Full Text PDFThe electronic states of N-butyl-N-methylpyrrolidinium dicyanamide ([BMP][DCA]), a solvated ionic liquid, around Li+ were investigated using attenuated total reflectance far-ultraviolet and deep-ultraviolet (ATR-FUV-DUV) spectroscopy. The absorption bands ascribed to the [DCA]- were blue-shifted as the Li+ concentration increased, and the origin of the shift was explained by the energetic destabilization of the final (excited) molecular orbital using time-dependent density functional theory (TD-DFT) calculations. Using the multivariate curve resolution-alternating least squares (MCR-ALS) algorithm, the obtained spectra were decomposed into two types of [DCA]- at electronic state level, which were categorised as pure [BMP][DCA] and [DCA]- affected by Li+.
View Article and Find Full Text PDFFocusing on the electric double layer formed at aqueous solution/graphite electrode interfaces, we investigated the relationship between the mobility of interfacial water and its hydrogen bonding networks by using molecular dynamics simulations. We focused on the mobility of the first hydration layer constructed nearest to the electrode. The mobility was determined by calculating the diffusion coefficient which showed an opposite trend to that of the applied potential polarity.
View Article and Find Full Text PDF