The development of non-human primate models of asthma requires a period of time (e.g., 0.
View Article and Find Full Text PDFProstaglandin (PG) D2, a major cyclooxygenase metabolite generated from immunologically stimulated mast cells, is known to induce activation and chemotaxis in eosinophils, basophils, and T helper 2 (Th2) lymphocytes via a newly identified PGD2 receptor, chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). CRTH2 is hypothesized to play an important role in the outcome of allergic responses. However, the absence of selective CRTH2 antagonists has prevented the elucidation of the role of CRTH2 in pathogenesis of allergic diseases.
View Article and Find Full Text PDFCoculture of mouse bone marrow-derived immature mast cells (BMMC) with Swiss 3T3 fibroblasts in the presence of stem cell factor (SCF) promotes morphological and functional maturation toward a connective tissue mast cell (CTMC)-like phenotype, which is accompanied by increased expression of several unique genes. Here we report the molecular identification of one of them, mast cell maturation-associated inducible gene (MMIG)-1. The MMIG-1 cDNA encodes a 117-kDa cytosolic protein that comprises an N-terminal PYRIN domain, a central nucleotide-binding domain, and nine C-terminal leucine-rich repeats.
View Article and Find Full Text PDF(1) To clarify the involvement of Th2 responses in the development of allergen-induced airway remodelling, we investigated the effect of anti-CD4 monoclonal antibody (mAb) and anti-CD8 mAb, and the responses of IL-4 gene-knockout (KO) mice in a murine model of allergic asthma. (2) Mice were immunized twice by intraperitoneal injections of ovalbumin (OA), and exposed to aeroallergen (OA, 1% w v(-1)) for 3 weeks. Twenty-four hours after the final challenge, airway responsiveness to acetylcholine was measured, and bronchoalveolar lavage (BAL) and histological examinations were carried out.
View Article and Find Full Text PDFGroup IID secretory phospholipase A(2) (sPLA(2)-IID), a heparin-binding sPLA(2) that is closely related to sPLA(2)-IIA, augments stimulus-induced cellular arachidonate release in a manner similar to sPLA(2)-IIA. Here we identified the residues of sPLA(2)-IID that are responsible for heparanoid binding, are and therefore essential for cellular function. Mutating four cationic residues in the C-terminal portion of sPLA(2)-IID resulted in abolition of its ability to associate with cell surface heparan sulfate and to enhance stimulus-induced delayed arachidonate release, cyclooxygenase-2 induction, and prostaglandin generation in 293 cell transfectants.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2002
The heparin-binding group II subfamily of secretory phospholipase A(2)s (sPLA(2)s), such as sPLA(2)-IIA and -IID, augments stimulus-induced arachidonic acid (AA) release through the cellular heparan sulfate proteoglycan (HSPG)-dependent pathway when transfected into HEK293 cells. Here we show that the closest homolog, sPLA(2)-IIE, also promotes stimulus-induced AA release and prostaglandin (PG) production similar to those elicited by HSPG-dependent sPLA(2)s. Confocal laser microscopic analysis demonstrates the location of sPLA(2)-IIE in cytoplasmic punctate compartments.
View Article and Find Full Text PDFHere we report the cellular arachidonate (AA)-releasing function of group IIF secretory phospholipase A(2) (sPLA(2)-IIF), a sPLA(2) enzyme uniquely containing a longer C-terminal extension. sPLA(2)-IIF increased spontaneous and stimulus-dependent release of AA, which was supplied to downstream cyclooxygenases and 5-lipoxygenase for eicosanoid production. sPLA(2)-IIF also enhanced interleukin 1-stimulated expression of cyclooxygenase-2 and microsomal prostaglandin E synthase.
View Article and Find Full Text PDF