Cytomegalovirus (CMV) reactivation from latency following immune dysregulation remains a serious risk for patients, often causing substantial morbidity and mortality. Here, we demonstrate the CMV-encoded G protein-coupled receptor, US28, in coordination with cellular Ephrin receptor A2, attenuates mitogen-activated protein kinase signaling, thereby limiting viral replication in latently infected primary monocytes. Furthermore, treatment of latently infected primary monocytes with dasatinib, a Food and Drug Association-approved kinase inhibitor used to treat a subset of leukemias, results in CMV reactivation.
View Article and Find Full Text PDFHuman (HCMV) is a ubiquitous pathogen that has coevolved with its host and, in doing so, is highly efficient in undermining antiviral responses that limit successful infections. As a result, HCMV infections are highly problematic in individuals with weakened or underdeveloped immune systems, including transplant recipients and newborns. Understanding how HCMV controls the microenvironment of an infected cell so as to favor productive replication is of critical importance.
View Article and Find Full Text PDFHuman cytomegalovirus (HCMV) is a ubiquitous herpesvirus for which there is no vaccine or cure. This viral infection, once acquired, is life-long, residing latently in hematopoietic cells. However, latently infected individuals with weakened immune systems often undergo HCMV reactivation, which can cause serious complications in immunosuppressed and immunocompromised patients.
View Article and Find Full Text PDFThe evidence that gene mutations in the polarity determinant Crumbs homologs-2 (CRB2) cause congenital nephrotic syndrome suggests the functional importance of this gene product in podocyte development. Because another isoform, CRB3, was reported to repress the mechanistic/mammalian target of the rapamycin complex 1 (mTORC1) pathway, we examined the role of CRB2 function in developing podocytes in relation to mTORC1. In HEK-293 and MDCK cells constitutively expressing CRB2, we found that the protein localized to the apicolateral side of the cell plasma membrane and that this plasma membrane assembly required N-glycosylation.
View Article and Find Full Text PDFInfections with human cytomegalovirus (HCMV) are highly prevalent in the general population as the virus has evolved the capacity to undergo distinct replication strategies resulting in lytic, persistent, and latent infections. During the latent life cycle, HCMV resides in subsets of cells within the hematopoietic cell compartment, including hematopoietic progenitor cells (HPCs) and peripheral blood monocytes. Since only a small fraction of these cell types harbor viral genomes during natural latency, identification and analysis of distinct changes mediated by viral infection are difficult to assess.
View Article and Find Full Text PDFHuman cytomegalovirus (HCMV), a leading cause of congenital birth defects, forms an unusual cytoplasmic virion maturation site termed the "assembly compartment" (AC). Here, we show that the AC also acts as a microtubule-organizing center (MTOC) wherein centrosome activity is suppressed and Golgi-based microtubule (MT) nucleation is enhanced. This involved viral manipulation of discrete functions of MT plus-end-binding (EB) proteins.
View Article and Find Full Text PDFThe successful colonization of the majority of the population by human cytomegalovirus is a direct result of the virus's ability to establish and, more specifically, reactivate from latency. The underlying cellular factors involved in viral reactivation remain unknown. Here, we show that the host complexfacilitateschromatintranscription (FACT) binds to the major immediate early promoter (MIEP) and that inhibition of this complex reduces MIEP transactivation, thus inhibiting viral reactivation.
View Article and Find Full Text PDFUnlabelled: Human herpesvirus 6A (HHV-6A), a member of the betaherpesvirus family, is associated with several human diseases. Like all herpesviruses, HHV-6A establishes a lifelong, latent infection in its host. Reactivation of HHV-6A is frequent within the immunosuppressed and immunocompromised populations and results in lytic viral replication within multiple organs, often leading to severe disease.
View Article and Find Full Text PDFRhophilin-1 is a Rho GTPase-interacting protein, the biologic function of which is largely unknown. Here, we identify and describe the functional role of Rhophilin-1 as a novel podocyte-specific protein of the kidney glomerulus. Rhophilin-1 knockout mice were phenotypically normal at birth but developed albuminuria at about 2 weeks of age.
View Article and Find Full Text PDFAlthough serious human diseases have been correlated with human herpesvirus 6A (HHV-6A) and HHV-6B, the lack of animal models has prevented studies which would more definitively link these viral infections to disease. HHV-6A and HHV-6B have recently been classified as two distinct viruses, and in this study we focused specifically on developing an in vivo model for HHV-6A. Here we show that Rag2⁻/⁻γc⁻/⁻ mice humanized with cord blood-derived human hematopoietic stem cells produce human T cells that express the major HHV-6A receptor, CD46.
View Article and Find Full Text PDFGlomerular diseases represent major diagnostic and therapeutic challenges with classification of these diseases largely relying on clinical and histological findings. Elucidation of molecular mechanisms of progressive glomerular disease could facilitate quicker development. High-throughput expression profiling reveals all genes and proteins expressed in tissue and cell samples.
View Article and Find Full Text PDFThe Crumbs family of transmembrane proteins has an important role in the differentiation of the apical membrane domain in various cell types, regulating such processes as epithelial cell polarization. The mammalian Crumbs protein family is composed of three members. Here, we inactivated the mouse Crb2 gene with gene-targeting techniques and found that the protein is crucial for early embryonic development with severe abnormalities appearing in Crb2-deficient embryos at late-gastrulation.
View Article and Find Full Text PDFUnbiased transcriptome profiling and functional genomics approaches identified glucocorticoid-induced transcript 1 (GLCCI1) as being a transcript highly specific for the glomerulus, but its role in glomerular development and disease is unknown. Here, we report that mouse glomeruli express far greater amounts of Glcci1 protein compared with the rest of the kidney. RT-PCR and Western blotting demonstrated that mouse glomerular Glcci1 is approximately 60 kD and localizes to the cytoplasm of podocytes in mature glomeruli.
View Article and Find Full Text PDFThe glomerular capillary tuft is a highly specialized microcapillary that is dedicated to function as a sophisticated molecular sieve. The glomerulus filter has a unique molecular composition, and several essential glomerular proteins are expressed in the kidney exclusively by glomerular podocytes. A catalog of >300 glomerulus-upregulated transcripts that were identified using expressed sequence tag profiling and microarray analysis was published recently.
View Article and Find Full Text PDFPhosphoglycerate mutases (PGMs) catalyze the isomerization of 2- and 3-phosphoglycerates and are essential for glucose metabolism in most organisms. This study reports the production, structure, and molecular dynamics analysis of Bacillus anthracis cofactor-independent PGM (iPGM). The three-dimensional structure of B.
View Article and Find Full Text PDFThe bacterial hyaluronan lyases (Hyals) that degrade hyaluronan, an important component of the extracellular matrix, are involved in microbial spread. Inhibitors of these enzymes are essential in investigation of the role of hyaluronan and Hyal in bacterial infections and constitute a new class of antibiotics against Hyal-producing bacteria. Recently, we identified 1,3-diacetylbenzimidazole-2-thione and related molecules as inhibitors of streptococcal Hyal.
View Article and Find Full Text PDFHyaluronidases are enzymes that degrade hyaluronan, an important component of the extracellular matrix. The mammalian hyaluronidases are considered to be involved in many (patho)physiological processes like fertilization, tumor growth, and metastasis. Bacterial hyaluronidases, also termed hyaluronate lyases, contribute to the spreading of microorganisms in tissues.
View Article and Find Full Text PDFStreptococcus pneumoniae hyaluronate lyase is a surface antigen of this Gram-positive human bacterial pathogen. The primary function of this enzyme is the degradation of hyaluronan, which is a major component of the extracellular matrix of the tissues of vertebrates and of some bacteria. The enzyme degrades its substrate through a beta-elimination process called proton acceptance and donation.
View Article and Find Full Text PDF