Cardiomyocytes are contractile cells that regulate heart contraction. Ca flux via Ca channels activates actomyosin interactions, leading to cardiomyocyte contraction, which is modulated by physical factors (e.g.
View Article and Find Full Text PDFUnlabelled: Stem cell-based therapy has been used to treat ischaemic heart diseases for two decades. However, optimal cell types and transplantation methods remain unclear. This study evaluated the therapeutic effects of human umbilical cord mesenchymal stem cell (hUCMSC) sheet on myocardial infarction (MI).
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 2020
Mechanical stimulation is well known to be important for maintaining tissue and organ homeostasis. Here, we found that hydrostatic pressure induced nuclear translocation of a forkhead box O (FOXO) transcription factor DAF-16, in C. elegans within minutes, whereas the removal of this pressure resulted in immediate export of DAF-16 to the cytoplasm.
View Article and Find Full Text PDFStem cell-derived sheet engineering has been developed as the next-generation treatment for myocardial infarction (MI) and offers attractive advantages in comparison with direct stem cell transplantation and scaffold tissue engineering. Furthermore, induced pluripotent stem cell-derived cell sheets have been indicated to possess higher potential for MI therapy than other stem cell-derived sheets because of their capacity to form vascularized networks for fabricating thickened human cardiac tissue and their long-term therapeutic effects after transplantation in MI. To date, stem cell sheet transplantation has exhibited a dramatic role in attenuating cardiac dysfunction and improving clinical manifestations of heart failure in MI.
View Article and Find Full Text PDFThe application of mechanical stimuli to cells often induce increases in intracellular calcium, affecting the regulation of a variety of cell functions. Although the mechanism of mechanotransduction-induced calcium increases has not been fully resolved, the involvement of mechanosensitive ion channels in the plasma membrane and the endoplasmic reticulum has been reported. Here, we demonstrate that voltage-gated L-type calcium channels play a critical role in the mechanosensitive calcium response in H9c2 rat cardiomyocytes.
View Article and Find Full Text PDFUnlabelled: Transcriptional regulation is crucial for neuronal activity-dependent processes that govern neuronal circuit formation and synaptic plasticity. An intriguing question is how neuronal activity influences the spatiotemporal interactions between transcription factors and their target sites. Here, using a single-molecule imaging technique, we investigated the activity dependence of DNA binding and dissociation events of cAMP-response element binding protein (CREB), a principal factor in activity-dependent transcription, in mouse cortical neurons.
View Article and Find Full Text PDFIntegrins mediate cell adhesion to the extracellular matrix and enable the construction of complex, multicellular organisms, yet fundamental aspects of integrin-based adhesion remain poorly understood. Notably, the magnitude of the mechanical load experienced by individual integrins within living cells is unclear, due principally to limitations inherent to existing techniques. Here we use Förster resonance energy transfer-based molecular tension sensors to directly measure the distribution of loads experienced by individual integrins in living cells.
View Article and Find Full Text PDFProper spatiotemporal gene expression is achieved by selective DNA binding of transcription factors in the genome. The most intriguing question is how dynamic interactions between transcription factors and their target sites contribute to gene regulation by recruiting the basal transcriptional machinery. Here we demonstrate individual binding and dissociation events of the transcription factor cAMP response element-binding protein (CREB), both in vitro and in living cells, using single-molecule imaging.
View Article and Find Full Text PDFThe structural dynamics of actin, including the tilting motion between the small and large domains, are essential for proper interactions with actin-binding proteins. Gly146 is situated at the hinge between the two domains, and we previously showed that a G146V mutation leads to severe motility defects in skeletal myosin but has no effect on motility of myosin V. The present study tested the hypothesis that G146V mutation impaired rotation between the two domains, leading to such functional defects.
View Article and Find Full Text PDFFocal adhesions (FAs) are micron-sized protein assemblies that coordinate cell adhesion, migration, and mechanotransduction. How the many proteins within FAs are organized into force sensing and transmitting structures is poorly understood. We combined fluorescent molecular tension sensors with super-resolution light microscopy to visualize traction forces within FAs with <100 nm spatial resolution.
View Article and Find Full Text PDFLiving cells are exquisitely responsive to mechanical cues, yet how cells produce and detect mechanical force remains poorly understood due to a lack of methods that visualize cell-generated forces at the molecular scale. Here we describe Förster resonance energy transfer (FRET)-based molecular tension sensors that allow us to directly visualize cell-generated forces with single-molecule sensitivity. We apply these sensors to determine the distribution of forces generated by individual integrins, a class of cell adhesion molecules with prominent roles throughout cell and developmental biology.
View Article and Find Full Text PDFProc Jpn Acad Ser B Phys Biol Sci
May 2010
Until recently, actin was thought to act merely as a passive track for its motility partner, myosin, during actomyosin interactions. Yet a recent report having observed dynamical conformational changes in labeled skeletal muscle alpha-actin suggests that actin has a more active role. Because the labeling technique was still immature, however, conclusions regarding the significance of the different conformations are difficult to make.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
December 2005
A simple microfabrication method for a controlled-release drug-delivery system has been designed using biodegradable polymeric microchips. Microholes were made in a poly(L-lactic acid) plate and dyes were cast in each well. After drying, the wells were sealed with polymers having different biodegradation rates using a mold that had hollows corresponding to the wells.
View Article and Find Full Text PDF