Recent developments in machine learning have enabled accurate predictions of the dynamics of slow structural relaxation in glass-forming systems. However, existing machine learning models for these tasks are mostly designed such that they learn a single dynamic quantity and relate it to the structural features of glassy liquids. In this study, we propose a graph neural network model, "BOnd TArgeting Network," that learns relative motion between neighboring pairs of particles, in addition to the self-motion of particles.
View Article and Find Full Text PDF