Publications by authors named "Masatomo Yamagiwa"

Phase imaging without a phase wrapping ambiguity is required for wide-axial-range 3D imaging in the fields of surface topography measurement and biomedical imaging. Although multicascade-linked synthetic-wavelength digital holography (MCL-SW-DH) using an optical frequency synthesizer (OFS) is a promising method to meet this requirement, the slow switching of multiple optical wavelengths in the OFS prevents rapid imaging. In the work described in this article, a line-by-line spectral-shaped electro-optics-modulator-based optical frequency comb (EOM-OFC) is used as a light source in MCL-SW-DH to achieve rapid image acquisition.

View Article and Find Full Text PDF

We construct a full-field phase-shifting terahertz digital holography (PS-THz-DH) system by use of a THz quantum cascade laser and an uncooled, 2D micro-bolometer array. The PS-THz-DH enables us to separate the necessary diffraction-order image from unnecessary diffraction-order images without the need for spatial Fourier filtering, leading to suppress the decrease of spatial resolution. 3D shape of a visibly opaque object is visualized with a sub-millimeter lateral resolution and a sub-µm axial resolution.

View Article and Find Full Text PDF

We proposed a refractive index (RI) sensing method with temperature compensation by using an optical frequency comb (OFC) sensing cavity including a multimode-interference (MMI) fiber, namely, the MMI-OFC sensing cavity. The MMI-OFC sensing cavity enables simultaneous measurement of material-dependent RI and sample temperature by decoding from the comb spacing frequency shift and the wavelength shift of the OFC. We realized the simultaneous and continuous measurement of RI-related concentration of a liquid sample and its temperature with precisions of 1.

View Article and Find Full Text PDF

Digital holography (DH) is a promising method for non-contact surface topography because the reconstructed phase image can visualize the nanometer unevenness in a sample. However, the axial range of this method is limited to the range of the optical wavelength due to the phase wrapping ambiguity. Although the use of two different wavelengths of light and the resulting synthetic wavelength, i.

View Article and Find Full Text PDF

Optical frequency combs (OFCs) have attracted attention as optical frequency rulers due to their tooth-like discrete spectra together with their inherent mode-locking nature and phase-locking control to a frequency standard. Based on this concept, their applications until now have been demonstrated in the fields of optical frequency metrology. However, if the utility of OFCs can be further expanded beyond their application by exploiting new aspects of OFCs, this will lead to new developments in optical metrology and instrumentation.

View Article and Find Full Text PDF

We demonstrate that stimulated parametric emission (SPE) microscopy enables label-free, 3-D visualization of internal hemoglobin distribution of live mouse and chicken erythrocytes with high sensitivity. Change in hemoglobin distribution in chicken erythrocytes before and after ethanol fixation is clearly visualized.

View Article and Find Full Text PDF

We recorded and observed, for the first time, three-dimensional image of femtosecond light pulse propagation as continuous moving picture using light-in-flight recording by holography. We present the moving pictures of collimated and converging light pulses and some images extracted from them. We also discussed inherent feature appearing in the images.

View Article and Find Full Text PDF

We observed a propagating femtosecond light pulse train generated by an integrated array illuminator as a spatially and temporally continuous motion picture. To observe the light pulse train propagating in air, light-in-flight holography is applied. The integrated array illuminator is an optical device for generating an ultrashort light pulse train from a single ultrashort pulse.

View Article and Find Full Text PDF