Polyzwitterions that show the alternation of net charge in response to external stimuli have attracted great attention as a new class of surface-polymers on nanomedicines. However, the correlation between their detailed molecular structures and expression of antifouling properties under physiological condition remain controversial. Herein, we synthesized a series of ethylenediamine-based polyzwitterions with carboxy groups/sulfonic groups and ethylene, propylene, and butylene spacers as potential surface-polymers for nanomedicines, allowing sensitive recognition of tumor acidic environments (pH = 6.
View Article and Find Full Text PDFIntroduction: The maintenance of intestinal homeostasis depends on a complex interaction between the immune system, intestinal epithelial barrier, and microbiota. Alteration in one of these components could lead to the development of inflammatory bowel diseases (IBD). Variants within the autophagy gene have been implicated in susceptibility and severity of Crohn's disease (CD).
View Article and Find Full Text PDFThe nitrogen-heteroatom single bonds of 1,2-azoles and isoxazolines underwent methylene insertion in the presence of CH I (6 equiv.) and diethylzinc (3 equiv.) to produce a wide variety of the ring-expanded six-membered heterocycles.
View Article and Find Full Text PDFChemoselective α-acylation of tertiary amides proceeded with highly electrophilic acid anhydrides and weak bases under mild conditions. β-Ketoamides containing trifluoroacetyl or perfluoroacyl groups were selectively obtained even in the presence of other functional groups such as ketone, ester, etc. Density functional theory calculations suggest that 1-acyloxyenamine is the key intermediate for the chemoselective α-acylation.
View Article and Find Full Text PDFSARS-CoV-2 causes a spectrum of clinical symptoms from respiratory damage to gastrointestinal disorders. Intestinal infection of SARS-CoV-2 triggers immune response. However, the cellular mechanism that how SARS-CoV-2 initiates and induces intestinal immunity is not understood.
View Article and Find Full Text PDFThe oxytocin receptor (OXTR) knockout mouse is a model of autism spectrum disorder, characterized by abnormalities in social and olfactory behaviors and learning. Previously, we demonstrated that OXTR plays a crucial role in regulating aversive olfactory behavior to butyric acid odor. In this study, we attempted to determine whether coffee aroma affects the abnormal olfactory behavior of OXTR-Venus knock-in heterozygous mice [heterozygous OXTR (±) mice] using a set of behavioral and molecular experiments.
View Article and Find Full Text PDFThe intestine is inhabited by a large number of commensal bacteria that are immunologically non-self, potentially causing inflammation. However, in a healthy intestine, inflammation is strictly controlled at low levels to maintain homeostasis. We previously reported that the gut microbiota induce DNA methylation of the gene encoding Toll-like receptor (TLR) 4, a pattern recognition receptor that recognizes lipopolysaccharides of gram-negative bacteria, in colonic epithelial cells, suggesting its role in controlling intestinal inflammation.
View Article and Find Full Text PDFGut-associated lymphoid tissue (GALT), such as Peyer's patches (PPs), are key inductive sites that generate IgA B cells, mainly through germinal center (GC) responses. The generation of IgA B cells is promoted by the presence of gut microbiota and dietary antigens. However, the function of GALT in the large intestine, such as cecal patches (CePs) and colonic patches (CoPs), and their regulatory mechanisms remain largely unknown.
View Article and Find Full Text PDFIsoxazoloazaborines 3 and 5 have been synthesized from 4--propargylaminoisoxazole 1 gold(I)-catalyzed propargyl aza-Claisen rearrangement followed by electrophilic borylative cyclization in 27-86% yields. generation of isoxazole 2 having an amino group and allenyl functionality is essential to give highly substituted isoxazoloazaborines 3 and 5, although the conventional propargyl aza-Claisen rearrangement readily affords the corresponding nitrogen-containing heterocycles, such as pyridines and pyrroles. The resulting isoxazoloazaborine 5a underwent the N-O bond insertion of zinc carbenoid to give oxazine-fused azaborine 6 in 48% yield.
View Article and Find Full Text PDFPropargyl aza-Claisen rearrangement of 4-propargylaminoisoxazoles 1 proceeded in the presence of cationic gold(i) catalysts to give 4-amino-5-allenylisoxazoles 2 in good to high yields. The silyl group at the terminal alkyne and a cationic gold(i) catalyst bearing a sterically bulky ligand are essential for the generation of isolable allene intermediates. The N-protection of the generated 4-amino-5-allenylisoxazoles 2 allowed the isolation of 5-allenylisoxazoles 4 that have never been synthesized.
View Article and Find Full Text PDFA huge number of commensal bacteria inhabit the intestine, which is equipped with the largest immune system in the body. Recently, the regulation of various physiological functions of the host by these bacteria has attracted attention. In this study, the effects of commensal bacteria on gene expression in colonic epithelial cells (CoECs) were investigated with focus on regulation of DNA methylation.
View Article and Find Full Text PDFBiosci Microbiota Food Health
March 2019
Resistant maltodextrin (RMD) is a soluble dietary fibre that exerts several physiological functions as a result of its microbial degradation and changes in the intestinal environment. It has been reported that RMD enhanced immunoglobulin A (IgA) secretion, which protects the mucosa from foreign substances. However, the effect of RMD on excessive immunity has yet to be investigated.
View Article and Find Full Text PDFT helper 9 (T9) cells are important for the development of inflammatory and allergic diseases. The T9 transcriptional network converges signals from cytokines and antigen presentation but is incompletely understood. Here, we identified TL1A, a member of the TNF superfamily, as a strong inducer of mouse and human T9 differentiation.
View Article and Find Full Text PDFBackground: Fructo-oligosaccharides (FOS) are prebiotic agents with immunomodulatory effects involving improvement of the intestinal microbiota and metabolome. In this study, we investigated the cellular mechanisms through which FOS modulate intestinal antigen-specific CD4+ T cell responses in food allergy, using OVA23-3 mice.
Methods: OVA23-3 mice were fed an experimental diet containing either ovalbumin (OVA) or OVA and FOS for 1 week.
The intestinal tract contains many commensal bacteria that modulate various physiological host functions. Dysbiosis of commensal bacteria triggers dysfunction of the intestinal epithelial barrier, leading to the induction or aggravation of intestinal inflammation. To elucidate whether microRNA plays a role in commensal microbiome-dependent intestinal epithelial barrier regulation, we compared transcripts in intestinal epithelial cells (IECs) from conventional and germ-free mice and found that commensal bacteria induced the expression of miR-21-5p in IECs.
View Article and Find Full Text PDFThe transcription factor FOXP3 plays key roles in the development and function of regulatory T cells (Treg) capable of preventing and correcting immunopathology. There has been much interest in exploiting Treg as adoptive cell therapy in man, but issues of lack of nominal antigen-specificity and stability of FoxP3 expression in the face of pro-inflammatory cytokines have been a concern. In order to enable fundamental studies of human () gene regulation and to provide preclinical tools to guide the selection of drugs that might modulate hFOXP3 expression for therapeutic purposes, we generated hFOXP3/AmCyan bacterial artificial chromosome (BAC) transgenic mice and transfectants, wherein hFOXP3 expression was read out as AmCyan expression.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
February 2017
α-Defensin 5 is important to both maintenance of a gut microbiota and host immunity. While previous reports have shown that gut bacteria are able to upregulate α-defensin 5 through Toll-like receptor signaling, we demonstrate here that α-defensin 5 expression can also be regulated by microbial metabolites. Among these, lactate appeared to significantly suppress α-defensin 5 gene transcription.
View Article and Find Full Text PDFImmune responses against gut microbiota should be minimized to avoid unnecessary inflammation at mucosal surface. In this study, we analyzed the expression patterns of Toll-interacting protein (Tollip), an inhibitor of TLRs and IL-1 family cytokine-related intracellular signaling, in intestinal epithelial cells (IECs). Comparable mRNA expression was observed in murine small and large IECs (S-IECs and L-IECs).
View Article and Find Full Text PDFTL1A contributes to the pathogenesis of several chronic inflammatory diseases, including those of the bowel by enhancing T1, T17, and T2 responses. TL1A mediates a strong costimulation of these T subsets, particularly of mucosal CCR9 T cells. However, the signaling pathways that TL1A induces in different T subsets are incompletely understood.
View Article and Find Full Text PDFGlucocorticoid-induced TNFR (Gitr) and Ox40, two members of the TNFR superfamily, play important roles in regulating activities of effector and regulatory T cells (Treg). Their gene expression is induced by T cell activation and further upregulated in Foxp3+ Treg. Although the role of Foxp3 as a transcriptional repressor in Treg is well established, the mechanisms underlying Foxp3-mediated transcriptional upregulation remain poorly understood.
View Article and Find Full Text PDFFoxp3 plays an important role in the development and the function of regulatory T cells (Treg). Both the induction and maintenance of Foxp3 gene expression are controlled by several regulatory regions including two enhancers in the conserved noncoding sequences (CNS). The functions of Enhancer 1 in CNS1 are well established, whereas those of Enhancer 2 in CNS2 remain unclear.
View Article and Find Full Text PDFIt has been demonstrated that intestinal commensal bacteria induce immunoglobulin (Ig) A production by promoting the development of gut-associated lymphoid tissues in the small intestine. However, the precise mechanism whereby these bacteria modulate IgA production in the large intestine, which harbors the majority of intestinal commensals, is poorly understood. In addition, it is not known which commensal bacteria induce IgA production in the small intestine and which induce production in the large intestine.
View Article and Find Full Text PDFIntestinal epithelial cells (IECs) are continuously exposed to large numbers of commensal bacteria but are relatively insensitive to them, thereby averting an excessive inflammatory reaction. We have previously reported that the hyporesponsiveness of a human IEC line to LPS was primarily the result of a down-regulation of TLR4 gene transcription through epigenetic mechanisms. In the present study we show that DNA methylation in the 5' region of the TLR4 gene is significantly higher in IECs than in splenic cells in vivo.
View Article and Find Full Text PDFMast cells differentiate from hematopoietic stem cells in the bone marrow and migrate via the circulation to peripheral tissues, where they play a pivotal role in induction of both innate and adaptive immune responses. In this study, the effect of intestinal commensal bacteria on the migration of mast cells into the intestine was investigated. Histochemical analyses showed that germ-free (GF) mice had lower mast cell densities in the small intestine than normal mice.
View Article and Find Full Text PDFColonization of the gut by commensal bacteria modulates the induction of oral tolerance and allergy. However, how these intestinal bacteria modulate antigen-specific T cell responses induced by oral antigens remains unclear. In order to investigate this, we used germ-free (GF) ovalbumin (OVA)-specific T cell receptor transgenic (OVA23-3) mice.
View Article and Find Full Text PDF