Objective: It is important to improve caregiving skills to help reduce the strain on inexperienced caregivers. Previous studies on quantifying caregiving skills have predominantly relied on expensive equipment, such as motion-capture systems with multiple infrared cameras or acceleration sensors. To overcome the cost and space limitations of existing systems, we developed a simple evaluation system for transfer care skills that uses capacitive sensors composed of conductive embroidery fibers.
View Article and Find Full Text PDFBackground: Transcranial magnetic stimulation (TMS), when applied over the primary motor cortex, elicits a motor-evoked potential (MEP) in electromyograms measured from peripheral muscles. MEP amplitude has often been observed to fluctuate trial to trial, even with a constant stimulus. Many factors cause MEP fluctuations in TMS.
View Article and Find Full Text PDFTranscranial magnetic stimulation (TMS) over the cerebellum facilitates the spinal reflex in healthy humans. The aim of this study was to investigate whether such cerebellar spinal facilitation (CSpF) appears in patients with spinocerebellar ataxia (SCA) presenting with atrophy in the cerebellar gray matter and dentate nucleus. One patient with SCA type 6 and another with SCA type 31 participated in this study.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2015
The aim of this study is to develop a three-dimensional touch interface for mobile devices, specifically a touch interface for detecting fingertip force. This interface consists of a conventional touch interface and an electromyogram (EMG) amplifier. The fingertip force during manipulation of the touch interface is estimated from the EMG measurement.
View Article and Find Full Text PDF