Mrp (Multiple resistance and pH) antiporter was identified as a gene complementing an alkaline-sensitive mutant strain of alkaliphilic C-125 in 1990. At that time, there was no example of a multi-subunit type Na/H antiporter comprising six or seven hydrophobic proteins, and it was newly designated as the monovalent cation: proton antiporter-3 (CPA3) family in the classification of transporters. The Mrp antiporter is broadly distributed among bacteria and archaea, not only in alkaliphiles.
View Article and Find Full Text PDFMrp antiporters are the sole antiporters in the Cation/Proton Antiporter 3 family of transporter databases because of their unusual structural complexity, 6-7 hydrophobic proteins that function as a hetero-oligomeric complex. The two largest and homologous subunits, MrpA and MrpD, are essential for antiport activity and have direct roles in ion transport. They also show striking homology with proton-conducting, membrane-embedded Nuo subunits of respiratory chain complex I of bacteria, e.
View Article and Find Full Text PDFBacillus alcalophilus AV1934, isolated from human feces, was described in 1934 before microbiome studies and recent indications of novel potassium ion coupling to motility in this extremophile. Here, we report draft sequences that will facilitate an examination of whether that coupling is part of a larger cycle of potassium ion-coupled transporters.
View Article and Find Full Text PDFMrp antiporters and their homologues in the cation/proton antiporter 3 family of the Membrane Transporter Database are widely distributed in bacteria. They have major roles in supporting cation and cytoplasmic pH homeostasis in many environmental, extremophilic, and pathogenic bacteria. These antiporters require six or seven hydrophobic proteins that form hetero-oligomeric complexes, while most other cation/proton antiporters require only one membrane protein for their activity.
View Article and Find Full Text PDFFEMS Microbiol Lett
October 2012
Multiple resistance and pH adaptation (Mrp) antiporters are widely distributed in various prokaryotes and have been reported to function as a hetero-oligomeric monovalent cation/proton antiporter, which exchanges a cytoplasmic monovalent cation (Na(+), Li(+), and/or K(+)) with extracellular H(+). In many organisms, they are essential for survival in alkaline or saline environments. Here, we report that the Mrp antiporter from the thermophilic gram-negative bacterium, Thermomicrobium roseum, does not catalyze monovalent cation/proton antiport like the Mrp antiporters studied to date, but catalyzes Ca(2+)/H(+) antiport in Escherichia coli membrane vesicles.
View Article and Find Full Text PDFMrp systems are widely distributed and structurally complex cation/proton antiporters. Antiport activity requires hetero-oligomeric complexes of all six or seven hydrophobic Mrp proteins (MrpA-MrpG). Here, a panel of site-directed mutants in conserved or proposed motif residues was made in the Mrp Na(+)(Li(+))/H(+) antiporter from an alkaliphilic Bacillus.
View Article and Find Full Text PDFMrp antiporters catalyze secondary Na(+)(Li(+))/H(+) antiport and/or K(+)/H(+) antiport that is physiologically important in diverse bacteria. An additional capacity for anion flux has been observed for a few systems. Mrp is unique among antiporters in that it requires all six or seven hydrophobic gene products (MrpA to MrpG) of the mrp operon for full antiporter activity, but MrpE has been reported to be dispensable.
View Article and Find Full Text PDF