An unexplored material of copper boride has been realized recently in two-dimensional form at a (111) surface of the copper crystal. Here, one-dimensional (1-D) boron growth was observed on the Cu(110) surface, as probed by atomically resolved scanning probe microscopy. The 1-D copper boride was composed of quasi-periodic atomic chains periodically aligned parallel to each other, as confirmed by Fourier transform analysis.
View Article and Find Full Text PDFThe magnetization reversal in nanomagnets is causally analyzed using an extended Landau free-energy model. This model draws an energy landscape in the information space using physics-based features. Thus, the origin of the magnetic effect in macroscopic pinning phenomena can be identified.
View Article and Find Full Text PDFJ Synchrotron Radiat
November 2021
The CeB(001) single crystal used as a cathode in a low-emittance electron gun and operated at the free-electron laser facility SACLA was investigated using cathode lens electron microscopy combined with X-ray spectroscopy at SPring-8 synchrotron radiation facility. Multilateral analysis using thermionic emission electron microscopy, low-energy electron microscopy, ultraviolet and X-ray photoemission electron microscopy and hard X-ray photoemission spectroscopy revealed that the thermionic electrons are emitted strongly and evenly from the CeB surface after pre-activation treatment (annealing at 1500°C for >1 h) and that the thermionic emission intensity as well as elemental composition vary between the central area and the edge of the old CeB surface.
View Article and Find Full Text PDFGraphene is promising for next-generation devices. However, one of the primary challenges in realizing these devices is the scalable growth of high-quality few-layer graphene (FLG) on device-type wafers; it is difficult to do so while balancing both quality and affordability. High-quality graphene is grown on expensive SiC bulk crystals, while graphene on SiC thin films grown on Si substrates (GOS) exhibits low quality but affordable cost.
View Article and Find Full Text PDFDetermination of crystal system and space group in the initial stages of crystal structure analysis forms a bottleneck in material science workflow that often requires manual tuning. Herein we propose a machine-learning (ML)-based approach for crystal system and space group classification based on powder X-ray diffraction (XRD) patterns as a proof of concept using simulated patterns. Our tree-ensemble-based ML model works with nearly or over 90% accuracy for crystal system classification, except for triclinic cases, and with 88% accuracy for space group classification with five candidates.
View Article and Find Full Text PDFWith the rapid depletion of communication-frequency resources, mainly due to the explosive spread of information communication devices for the internet of things, GaN-based high-frequency high-power transistors (GaN-HEMTs) have attracted considerable interest as one of the key devices that can operate in the high-frequency millimeter-wave band. However, GaN-HEMT operation is destabilized by current collapse phenomena arising from surface electron trapping (SET), which has not been fully understood thus far. Here, we conduct quantitative mechanistic studies on SET in GaN-HEMTs by applying element- and site-specific photoelectron nanospectroscopy to a GaN-HEMT device under operation.
View Article and Find Full Text PDFThe mechanism of the one-order-of-magnitude increase in the density of vertically aligned carbon nanotubes (CNTs) achieved by a recently developed thermal chemical vapor deposition process was studied using synchrotron radiation spectroscopic techniques. In the developed process, a Ti film is used as the underlayer for an Fe catalyst film. A characteristic point of this process is that C2H2 feeding for the catalyst starts at a low temperature of 450°C, whereas conventional feeding temperatures are ∼800°C.
View Article and Find Full Text PDFWe prepared L10-ordered FeNi alloy films by alternate deposition of Fe and Ni monatomic layers, and investigated their magnetic anisotropy. We employed a non-ferromagnetic Au-Cu-Ni buffer layer with a flat surface and good lattice matching to L10-FeNi. An L10-FeNi film grown on Au6Cu51Ni43 showed a large uniaxial magnetic anisotropy energy (Ku = 7.
View Article and Find Full Text PDFGraphene, a 2D crystal bonded by π and σ orbitals, possesses excellent electronic properties that are promising for next-generation optoelectronic device applications. For these a precise understanding of quasiparticle behaviour near the Dirac point (DP) is indispensable because the vanishing density of states (DOS) near the DP enhances many-body effects, such as excitonic effects and the Anderson orthogonality catastrophe (AOC) which occur through the interactions of many conduction electrons with holes. These effects renormalize band dispersion and DOS, and therefore affect device performance.
View Article and Find Full Text PDFThe observation method of photoemission electron microscopy (PEEM) on insulating samples has been established in an extremely simple way. Surface conductivity is induced locally on an insulating surface by continuous radiation of soft X-rays, and Au films close to the area of interest allow the accumulated charges on the insulated area to be released to ground level. Magnetic domain observations of a NiZn ferrite, local X-ray absorption spectroscopy of sapphire, high-resolution imaging of a poorly conducting Li0.
View Article and Find Full Text PDFWe present experimental evidence for a three-dimensional noncollinear antiferromagnetic spin structure in ultrathin single-crystalline fcc Fe50Mn50 layers using magnetic circular dichroism photoelectron emission microscopy and x-ray magnetic linear dichroism. Layer-resolved as-grown domain images of epitaxial trilayers grown on Cu(001) in which FeMn is sandwiched between ferromagnetic layers with different easy axes reveal the presence of antiferromagnetic spin components in the film plane and normal to the film plane. An FeMn spin structure with no collinear order in the film plane is consistent with the absence of x-ray magnetic linear dichroism in Fe L3 absorption in FeMn/Co bilayers.
View Article and Find Full Text PDF