Publications by authors named "Masateru Kitashiro"

The anatomical design of the human foot is considered to facilitate generation of bipedal walking. However, how the morphology and structure of the human foot actually contribute to generation of bipedal walking remains unclear. In the present study, we investigated the three-dimensional kinematics of the foot bones under a weight-bearing condition using cadaver specimens, to characterize the innate mobility of the human foot inherently prescribed in its morphology and structure.

View Article and Find Full Text PDF

Background: It has been reported that hallux valgus (HV) is associated with axial rotation of the first metatarsal (1MT). However, the association between HV and torsion of the 1MT head with respect to the base has not been previously investigated. The present study examined whether there was a significant difference in 1MT torsion between HV and control groups.

View Article and Find Full Text PDF

It has been demonstrated that the torsional patterns of the metatarsal heads are associated with the presence or absence of the medial longitudinal arch in hominoid feet. The relatively untwisted second metatarsal is unique in humans, but that of the African apes is much more inverted, suggesting that the torsion of the second metatarsal might represent the overall shape and flatness of the foot. Some clinical studies have recently argued that the onset of foot pathologies such as hallux valgus might be related to the torsional pattern of the metatarsals.

View Article and Find Full Text PDF

Background: Although bone defects of the humeral head and glenoid could affect glenohumeral instability, bone loss has not been sufficiently evaluated. The purpose of this study was to quantify bone defects 3-dimensionally in cases with glenohumeral instability.

Methods: Three-dimensional surface models of bilateral proximal humeri and glenoids were reconstructed from computed tomography scans of 90 patients with symptomatic, unilateral, recurrent glenohumeral instability.

View Article and Find Full Text PDF

Marfan syndrome (MFS) is an autosomal dominant genetic disease caused by abnormal formation of the extracellular matrix with an incidence of 1 in 3, 000 to 5, 000. Patients with Marfan syndrome experience poor quality of life caused by skeletal disorders such as scoliosis, and they are at high risk of sudden death from cardiovascular impairment. Suitable animal models of MFS are essential for conquering this intractable disease.

View Article and Find Full Text PDF